

Wellgreen Platinum Ltd. Wellgreen PGM-Ni-Cu Project Yukon Territory, Canada

2014 Mineral Resource Estimate on the Wellgreen PGM-Ni-Cu Project NI 43-101 Technical Report

Prepared for: Wellgreen Platinum Ltd.

Prepared by: Ronald G. Simpson, P.Geo., GeoSim Services Inc.

Effective Date: September 8, 2014

TITLE PAGE

Project Name:	Wellgreen PGM-Ni-Cu Project
Title:	2014 Mineral Resource Estimate on the Wellgreen PGM-Ni-Cu Project
Location:	Yukon Territory, Canada

Effective Date of Technical Report: September 8, 2014

Effective Date of Mineral Resource: July 23, 2014

Effective Date of Drilling Database: March 18, 2014

Qualified Person:

Ronald G. Simpson, Principal of GeoSim Services Inc. was responsible for all Sections of the Technical Report.

SIGNATURE PAGE & CERTIFICATES

Effective Date of Technical Report

September 8, 2014.

(signed and sealed) "Ronald G. Simpson"

Ronald G. Simpson, P.Geo. GeoSim Services Inc.

CERTIFICATE OF QUALIFIED PERSON

Ronald G. Simpson, P.Geo. GeoSim Services Inc. 1975 Stephens St. Vancouver, BC, Canada V6K 4M7 Tel: (604) 803-7470 E-mail: rsimpson@geosimservices.com

I, Ronald G. Simpson, P.Geo., do hereby certify:

- I am employed as a Professional Geoscientist with GeoSim Services Inc.
- This certificate applies to the technical report titled "2014 Mineral Resource Estimate on the Wellgreen PGM-Ni-Cu Project" with an effective date of September 8, 2014 (the "Technical Report").
- I am a Professional Geoscientist (19513) in good standing with the Association of Professional Engineers and Geoscientists of British Columbia. I graduated with a Bachelor of Science in Geology from the University of British Columbia, May 1975.
- I have practiced my profession continuously for 39 years. I have been directly involved in mineral exploration, mine geology and resource estimation with practical experience from feasibility studies.
- As a result of my experience and qualifications, I am a qualified person as defined in National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI 43-101").
- I visited the property on September 17, 2013.
- I am responsible for all sections of the Technical Report.
- I am independent of Wellgreen Platinum Ltd. as described in Section 1.5 of NI 43-101.
- I have had no prior involvement with the property that is the subject of the Technical Report.
- I have read NI 43-101 and the Technical Report has been prepared in compliance with NI 43-101.
- As of the effective date of the Technical Report, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the Technical Report not misleading.

Dated: September 8, 2014.

(signed and sealed) "Ronald G. Simpson"

Ronald G. Simpson, P.Geo.

FORWARD LOOKING INFORMATION

This Technical Report includes certain information that may be deemed "forward-looking information". Forward-looking information can generally be identified by the use of forwardlooking terminology such as "may", "will", "expect", "intend", "estimate", "anticipate", "believe", "continue", "plans" or similar terminology. All information in this release, other than information of historical facts, including, without limitation, the timing of the preliminary economic assessment update and pre-feasibility level studies, the scale and potential of the Wellgreen project, the anticipated improvements to metal recoveries, engineering and mine planning, general future plans and objectives for the Wellgreen project, are forward-looking information that involve various risks and uncertainties. Although Wellgreen Platinum Ltd. believes that the expectations expressed in such forward-looking information are based on reasonable assumptions. such expectations are not guarantees of future performance and actual results or developments may differ materially from those in the forward-looking information. Forward-looking information is based on a number of material factors and assumptions. Factors that could cause actual results to differ materially from the forward-looking information include changes in project parameters as plans continue to be refined, future metal prices, availability of capital and financing on acceptable terms, uncertainties inherent to metallurgical and mining studies, general economic, market or business conditions, uninsured risks, regulatory changes, defects in title, availability of personnel, materials and equipment on a timely basis, accidents or equipment breakdowns, delays in receiving government approvals, Wellgreen Platinum Ltd.'s ability to maintain the support of stakeholders necessary to develop the Wellgreen project, unanticipated environmental impacts on operations and costs to remedy same, and other risks detailed herein and from time to time in the filings made by the Company with securities regulatory authorities in Canada. Readers are cautioned that mineral resources that are not mineral reserves do not have demonstrated economic viability. Mineral exploration and development of mines is an inherently risky business. Accordingly, actual events may differ materially from those projected in the forward-looking information. For more information on Wellgreen Platinum Ltd. and the risks and challenges of our business, investors should review the company's annual filings which are available at www.sedar.com. Readers are cautioned not to place undue reliance on forward-looking information. Wellgreen Platinum Ltd. does not undertake to update any forward looking information, except in accordance with applicable securities laws.

CAUTIONARY NOTE TO UNITED STATES INVESTORS

This Technical Report uses the terms "measured", "indicated" and "inferred" resources in accordance with the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Definition Standards. United States investors are advised that while such terms are recognized and required by Canadian securities laws, the United States Securities and Exchange Commission does not recognize these terms. The term "inferred mineral resource" refers to a mineral resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. These estimates are based on limited information and have a great amount of uncertainty as to their existence, and as to their economic and legal feasibility. It cannot be assumed that all or any part of an inferred mineral resource will ever be upgraded to a higher category of resource, such as "indicated" or "measured", as a result of continued exploration. Under Canadian securities laws, estimates of an "inferred mineral resource" may not form the basis of feasibility or other economic studies. United States investors are cautioned not to assume that all or any part of "measured" or "indicated mineral resources" will ever be converted into "mineral reserves" (the economically mineable part of an "indicated" or "measured mineral resource". United States investors are also cautioned not to assume that all or any part of an inferred mineral resource exists, or is economically or legally mineable.

TABLE OF CONTENTS

1 5	SUMMARY		11
1.1	Introduction		11
1.2	Project Histor	у	
1.3	Geology and I	Vineralization	12
1.4	Drill Hole and	Assay Database	
1.5		resting	
1.6	Mineral Resou	urces	
1.7	Interpretation	and Conclusions	15
1.8	Recommenda	tions	15
2 I		ND TERMS OF REFERENCE	
2.1	Terms of Refe	erence	16
2.2	Qualified Pers	sons	
2.3	Site Visits and	Scope of Personal inspection	16
2.4		S	
2.5	Information so	ources and References	
3 F	RELIANCE ON OT	HER EXPERTS	16
4 F	PROPERTY DESC	RIPTION AND LOCATION	17
4.1	Tenure Histor	у	17
4.2	Mineral Tenur	, e	
4.3	Property Own	ership and History	
4.4		· · · · ·	
4.5	Environmenta	I Liabilities	
4.6			
5 A	ACCESSIBILITY.	CLIMATE, INFRASTRUCTURE AND PH	IYSIOGRAPHY 34
5.1		,,	
	Accessibility		34
5.1	Accessibility Climate		34 34
5.1 5.2 5.3	Accessibility Climate Local Resourc		
5.1 5.2 5.3	Accessibility Climate Local Resource 5.3.1 Power	ces Infrastructure	
5.1 5.2 5.3	Accessibility Climate Local Resourd 5.3.1 Power 5.3.2 Water	ces Infrastructure	
5.1 5.2 5.3	Accessibility Climate Local Resourc 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers	ces Infrastructure	
5.1 5.2 5.3 5 5 5.4	Accessibility Climate Local Resourc 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography	ces Infrastructure	
5.1 5.2 5.3 5 5 5.4	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography HISTORY	ces Infrastructure	
5.1 5.2 5.3 5 5 5.4 6 h	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography HISTORY Prior Ownersh	ces Infrastructure	
5.1 5.2 5.3 5 5.4 6 H 6.1	Accessibility Climate Local Resource 3.3.1 Power 5.3.2 Water 5.3.3 Mining Person Physiography HISTORY Prior Ownersh Previous Expl	ces Infrastructure sonnel	
5.1 5.2 5.3 5.4 6 h 6.1 6.2 6.3 6.4	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction	
5.1 5.2 5.3 5.4 6 h 6.1 6.2 6.3 6.4	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ	ces Infrastructure sonnel hip and Ownership Changes oration and Development	
5.1 5.2 5.3 5.4 6 h 6.1 6.2 6.3 6.4	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography Historg Ownersh Previous Expl Historic Miner Historic Produ GEOLOGICAL SE	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction	
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7 (Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Person Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo	ces Infrastructure sonnel nip and Ownership Changesoration and Developmental Resource and Reserve Estimates iction	34 34 35 35 35 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 38 38 38 38 39
5.1 5.2 5.3 5.4 6.1 6.2 6.3 6.4 7.1	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction TTING AND MINERALIZATION	
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7.1 7.2	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction TTING AND MINERALIZATION logy	
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7 (7.1 7.2 7.3 7.4	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction TTING AND MINERALIZATION logy	34 34 35 35 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7 (7.1 7.2 7.3 7.4 7	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography IISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zo	ces Infrastructure sonnel nip and Ownership Changesoration and Development al Resource and Reserve Estimates iction TTING AND MINERALIZATION logy	34 34 35 35 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4 7	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zore .	ces Infrastructure sonnel nip and Ownership Changes oration and Development al Resource and Reserve Estimates iction TTING AND MINERALIZATION logy ogy	34 34 35 35 35 36 36 36 37 37 37 37 37 37 37 38 39 39 40 40 43 44 44 45 45
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4 7 7	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zor 7.4.2 East Zone . 7.4.3 Central Zor	ces Infrastructure	34 34 35 35 35 36 36 36 37 37 37 37 37 38 39 39 40 40 43 44 44 45 45
5.1 5.2 5.3 5.4 6 H 6.1 6.2 6.3 6.4 7.1 7.2 7.3 7.4 7 7 7 7	Accessibility Climate Local Resource 3.3.1 Power 3.3.2 Water 5.3.3 Mining Pers Physiography Historic Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zor 7.4.3 Central Zor 7.4.4 West Zone	ces Infrastructure	34 34 35 35 35 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
5.1 5.2 5.3 5.4 6 H 6.1 6.3 6.4 7 C 7.3 7.4 7.3 7.4 7 7 7 7 7	Accessibility Climate Local Resource 3.3.1 Power 3.3.2 Water 5.3.3 Mining Pers Physiography HISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zone . 7.4.3 Central Zor 7.4.4 West Zone 7.4.5 Far West Z	ces Infrastructure	34 34 35 35 35 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37
5.1 5.2 5.3 5.4 6 H 6.2 6.3 6.4 7.1 7.3 7.4 7.3 7.4 7 7 7 7 7 7 7	Accessibility Climate Local Resource 5.3.1 Power 5.3.2 Water 5.3.3 Mining Pers Physiography IISTORY Prior Ownersh Previous Expl Historic Miner Historic Produ SEOLOGICAL SE Regional Geo Local Geology Property Geol Mineralization 7.4.1 Far East Zor 7.4.2 East Zone . 7.4.3 Central Zor 7.4.4 West Zone 7.4.5 Far West Z 7.4.6 North Arm	ces Infrastructure	34 34 35 35 35 36 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37

	POSIT TYPE	
9 EX	PLORATION	
9.1	Exploration Potential	
9.2	Grids and Surveys	
9.3	Geological Mapping	
9.4	Geochemical Sampling	
9.5	Geophysics	
	RILLING	
10.1	Historic Drilling	
	1.1 Northern Platinum Drilling	
	1.2 1996 Drill Program	
	1.3 2001 Drill Program	
	1.4 2005 Drill Program	
	1.5 2006-2008 Coronation Minerals Drilling	
10.2		
	2.1 2011 Drill Program	
	2.2 2012 Drill Program	
	2.3 2013 Drill Program	
	2.4 2013 Re-Sampling of Historic Drill Core	
10.3	Recovery	
10.4	Collar Surveys	
10.5	Downhole Surveys	
10.6	Sample Length/True Thickness	
	MPLE PREPARATION, ANALYSES AND SECURITY	
11.1		.66
	1.1 Historic Drill Programs 1952-1988	
	1.2 Northern Platinum Programs 1996-2005	
	1.3 Coronation Minerals Programs 2006-2008	
	1.4 Northern Platinum 2009-2010 Programs	
	1.5 Wellgreen Platinum Programs 2011-2013	
	1.6 Wellgreen Platinum Soil Geochemical Sampling 2012	
11.2	Density Determinations	
11.3	Metallurgical Sampling	
11.4	Sample Preparation and Analysis	
	4.1 Historic Programs 1952-1988	
	4.2 Northern Platinum 1996-2010 Programs	
11.	4.3 Wellgreen Platinum Programs 2011-2013	
11.5	Quality Assurance and Quality Control	
	.5.1 Standards	
	5.2 Blanks	
	5.3 Duplicates	
11.6	Databases	
11.7	Sample Security	
11.8	Opinion on Adequacy	
	TA VERIFICATION	
12.1	Site Visit Validation	
12.2	Database Verification	
12.3	Data Adequacy	
13 MI	NERAL PROCESSING AND METALLURGICAL TESTING	
13.1	Metallurgical Testing Details	
13.2	Future Metallurgical Test Work	
14 MI	NERAL RESOURCE ESTIMATE	.87

14.1 Summary	87
14.2 Key Assumptions/Basis of Estimate	88
14.3 Geological Models	88
14.4 Exploratory Data Analysis	
14.5 Density Assignment	94
14.6 Grade Capping/Outlier Restrictions	94
14.7 Compositing	
14.8 Variography	
14.8.1 MS-Gabbro Domain	
14.8.2 Peridotite Domain	
14.9 Estimation/Interpolation Methods	97
14.9.1 MS-Gabbro Domains	97
14.9.2 Dunite / Peridotite / Pyroxentite / Clinopyroxenite Domains	
14.9.3 Sulphur Estimation	
14.10 Block Model Validation	
14.10.1 Visual Inspection	
14.10.2 Global Bias Check	
14.10.3 Check for Local Bias	
14.11 Classification of Mineral Resources	
14.12 Metal Equivalency Grades	
14.13 Reasonable Prospects of Economic Extraction	
14.14 Mineral Resource Estimate	
14.15 Factors That May Affect the Mineral Resource Estimate	
15 ADJACENT PROPERTIES	
16 OTHER RELEVANT DATA AND INFORMATION.	
17 INTERPRETATION AND CONCLUSIONS	
18 RECOMMENDATIONS	
19 REFERENCES	111

LIST OF TABLES

Table 1-1 Mineral Resource at a 0.15% NiEq cut-off	14
Table 1-2 Mineral Resource at a 0.50% NiEq cut-off	
Table 4-1 Mineral Claims	19
Table 4-2 Surface Leases	28
Table 4-3 Class 3 Operating Permit Terms	
Table 7-1 Opaque Minerals Observed in the Wellgreen Deposit	47
Table 7-2 Primary PGE-Bearing Minerals	48
Table 7-3 Additional PGE-Bearing Minerals	48
Table 10-1 Wellgreen Platinum 2011 Drill Collars	53
Table 10-2 Significant Intercepts 2011 Drilling	54
Table 10-3 Wellgreen Platinum 2012 Drill Collars	55
Table 10-4 Significant Intercepts 2012 Drilling	56
Table 10-5 Wellgreen Platinum 2013 Drill Collars	58
Table 10-6 Significant Intercepts 2013 Drilling	59
Table 10-7 Significant Intercepts From Re-sampled 1987-1988 Core	60
Table 11-1 Standard Reference Materials	69
Table 11-2 Quarter Core Duplicate Performance from RMA plots	77
Table 13-1 Estimated Metal Recoveries By Geologic Domain	84
Table 13-2 Estimated Concentrate Grades and Blended Recoveries in Primary	Target
Geologic Domains	85

Table 14-1 Mineral Resource at a 0.15% NiEq cut-off	87
Table 14-2 Mineral Resource at a 0.50% NiEq cut-off	87
Table 14-3 Drilling Summary	
Table 14-4 Lithologic Domain Coding	89
Table 14-5 Composite Statistics Pre-1987 Data - Peridotite Domain	91
Table 14-6 Composite Statistics 1987-2013 Data - Peridotite Domain	92
Table 14-7 Composite Statistics pre-1987 Data- MS-Gabbro Domain	92
Table 14-8 Composite Statistics 1987-2013 Data - MS-Gabbro Domain	92
Table 14-9 Density Assignments	94
Table 14-10 Outlier Restrictions	94
Table 14-11 Variogram Models - MS-Gabbro Domain	96
Table 14-12 Variogram Models – Peridotite Domain	97
Table 14-13 Search Parameters for MS-Gabbro Domains	
Table 14-14 Search Parameters for Dunite/Peridotite/Pyroxenite/Clinopyroxenite	Domains
Table 14-15 Search Parameters for Sulphur Content in MS-Gabbro Domains	101
Table 14-16 Search Parameters for Sulphur Content in Peridotite Domains	101
Table 14-17 Global Mean Grade Comparison in Peridotite	
Table 14-18 Pit Optimization Parameters	
Table 14-19 Mineral Resource at a 0.15% NiEq cut-off	106
Table 14-20 Mineral Resource at a 0.50% NiEq cut-off	106
Table 14-21 Sensitivity to Cut-off Grade - Measured Category	
Table 14-22 Sensitivity to Cut-off Grade - Indicated Category	107
Table 14-23 Sensitivity to Cut-off Grade - Measured and Indicated Category	108
Table 14-24 Sensitivity to Cut-off Grade - Inferred Category	108

LIST OF FIGURES

Figure 4-1 Location Map	17
Figure 4-2 Mineral Tenure	28
Figure 4-3 Wellgreen Surface Leases	29
Figure 4-4 Operating Plan Permits	31
Figure 4-5 Kluane First Nation Land Status	33
Figure 5-1 Project Access	34
Figure 7-1 Regional Geologic Setting	40
Figure 7-2 Geology of the Quill Creek Area from Israel & and Van Zeyl (2004)	42
Figure 7-3 Kluane Mafic-Ultramafic Sill Complex Model (Hubert 1995)	43
Figure 7-4 Property Geology	44
Figure 9-1 Cu Soil Geochemistry - 2012	51
Figure 9-2 Magnetic-VLF Survey Extent	51
Figure 10-1 2011 Drill Plan	54
Figure 10-2 2012 Surface Drilling	57
Figure 10-3 2012 Underground Drilling	57
Figure 10-4 2013 Drilling	60
Figure 10-5 Re-sampled 1987-1988 Drill Holes	
Figure 11-1 Standard Control Chart WPR-1a for Ni	
Figure 11-2 Standard Control Chart WPR-1a for Cu	71
Figure 11-3 Standard Control Chart WPR-1a for Co	71
Figure 11-4 Standard Control Chart WPR-1 for Pt	
Figure 11-5 Standard Control Chart WPR-1 for Pd	72
Figure 11-6 Standard Control Chart WPR-1 for Au	73
Figure 11-7 RMA Plot Quarter Core for Ni	74

Figure 11-8 RMA Plot Quarter Core for Cu	74
Figure 11-9 RMA Plot Quarter Core for Co	75
Figure 11-10 RMA Plot Quarter Core for Pt	75
Figure 11-11 RMA Plot Quarter Core for Pd	76
Figure 11-12 RMA Plot Quarter Core for Au	76
Figure 11-13 ARD Chart for Ni	
Figure 11-14 ARD Chart for Cu	78
Figure 11-15 ARD Chart for Co	79
Figure 11-16 ARD Chart for Pd	
Figure 11-17 ARD Chart for Pt	
Figure 11-18 ARD Chart for Au	80
Figure 12-1 Drill Hole Collar Markers	82
Figure 13-1 Proposed Metallurgical Flowsheet	86
Figure 14-1 Plan View of Lithologic Domains	
Figure 14-2 Perspective View showing MS-Gb along Peridotite Contacts	90
Figure 14-3 Perspective View showing MS-Gb along Footwall Sediment Contacts	
Figure 14-4 Frequency Distribution of Ni in Peridotite (Prd)	92
Figure 14-5 Frequency Distribution of Ni in MS-Gabbro	93
Figure 14-6 Frequency Distribution of Cu in Peridotite	93
Figure 14-7 Frequency Distribution of Cu in MS-Gabbro	93
Figure 14-8 Cumulative Log Probability Plots for Ni, Cu and Co	95
Figure 14-9 Cumulative Log Probability Plots for Au, Pt and Pd	95
Figure 14-10 Variogram Maps - Peridotite	
Figure 14-11 MS-Gabbro Search Domains – View Looking North	99
Figure 14-12 Peridotite/Pyrxoxenite/Clinopyroxenite Search Domains	100
Figure 14-13 Swath Plot X Drift - Ni	
Figure 14-14 Swath Plot X Drift - Cu	
Figure 14-15 Swath Plot X Drift - Co	103
Figure 14-16 Swath Plot X Drift - Pt	
Figure 14-17 Swath Plot X Drift - Pd	104
Figure 14-18 Swath Plot X Drift - Au	104

1 SUMMARY

1.1 Introduction

GeoSim Services Inc. (GeoSim) was requested by Wellgreen Platinum Ltd. (Wellgreen Platinum) to prepare an updated mineral resource estimate (the Technical Report) for the Wellgreen PGM-Ni-Cu project located in the southwestern Yukon, Canada (the Project).

The Project is located approximately 317 kilometres northwest of Whitehorse in southwestern Yukon. The Project site is readily accessible by vehicle from Whitehorse via the paved all-weather Alaska Highway.

The Wellgreen property (the Property) lies in the Kluane Ranges, which are a continuous chain of foothills situated along the eastern flank of the Saint Elias Mountains. The topography across the Property is typical of that area of the Yukon with slopes in the 250 to 300 metre range, and the highest peaks exceed an elevation of 1,800 metres.

The Property is comprised of 345 mineral claims in four groups totaling 5,933 hectares. The claims were staked as early as 1952 with expiry dates that range from February 2015 to February 2032. The Wellgreen Platinum claims are 100% owned, directly or indirectly, by Wellgreen Platinum. The Wellgreen deposit is located on 13 Quartz Mining Leases which all have an expiry date of December 5, 2020.

Wellgreen Platinum also holds two surface leases issued by the Government of Canada and administered by the Government of Yukon: Lease 115G05-001 and 115G11-003.

1.2 **Project History**

Prospectors W. Green, C. Aird and C. Hankins staked the first recorded mineral claims on the Wellgreen Property in 1952. Underground mining operations were initiated in 1971 with commercial production commencing in 1972 by Hudson Yukon Mining Co. Ltd. (Hudson Yukon Mining), a subsidiary of Hudson Bay Mining & Smelting Co. Ltd (HudBay). Production was suspended in 1973.

The property was optioned to a joint venture between All-North Resources Ltd. (All-North) and Chevron Minerals in 1986 (Kluane JV) which acquired a 50% interest in the Property. That same year, Galactic Resources Ltd. purchased the Hudson Yukon Mining interest and net smelter returns royalty on the property, and merged with All-North. In 1989, All-North purchased Chevron Minerals' 25% interest to acquire a 100% interest in the Property. Other joint ventures were formed on the Arch Property, which lies west of Wellgreen.

In 1994, Northern Platinum Ltd. (Northern Platinum) acquired an 80% interest in Wellgreen from All North, with the remaining 20% purchased by Northern Platinum in 1999. Coronation Minerals Ltd. optioned the property in 2005, but dropped the option in 2009. As a result, the property was returned to Northern Platinum.

Prophecy Resource Corp. purchased Northern Platinum near the end of 2010. The property and other nickel assets were spun out to Pacific Coast Nickel Corp, which then changed its name to Prophecy Platinum Corp. in 2011. Prophecy Platinum Corp. changed its name to Wellgreen Platinum Ltd. in 2013.

1.3 Geology and Mineralization

The Wellgreen deposit occurs within, and along the lower margin of, an Upper Triassic ultramafic-mafic body, within the Quill Creek Complex. This assemblage of mafic-ultramafic rocks is 20 kilometres long and closely intrudes along the contact between the Station Creek and Hasen Creek formations. The main mass of the Quill Creek Complex, the Wellgreen and Quill intrusions, is 4.7 kilometres long and up to 1,000 metres wide.

Mineralization on the Property occurs within the Quill Creek Complex, a layered intrusion which gradationally transitions from Dunite to Peridotite to Pyroxenite to Clinopyroxenite to Gabbro with a corresponding increasing sulphide content through this sequence toward contact with the Paleozoic sedimentary country rocks. Mineralization within the main Wellgreen deposit has been delineated into six zones of massive and disseminated mineralization known respectively as the Far East Zone, East Zone, Central Zone, West Zone, Far West Zone, and North Arm Zone. The mineralization at Wellgreen is similar to gabbro-associated nickel deposits such as those found in Noril'sk, Russia; Stillwater, Montana; and Sudbury, Ontario, though it is unusual in comparison with the width of continuous disseminated mineralization and total platinum group metals (PGMs) content.

Exploration drilling has defined a mineralized zone over a 2.8 kilometre East-West trend. The deposit averages 100 to 200 metres in thickness at surface in the Far West Zone, expands to 500 metres in thickness in the Central Zone and to nearly a kilometre wide in the Far East Zone where the deposit remains open down dip and along trend.

The main sulphide minerals associated with potentially economic mineralization at Wellgreen include pentlandite for nickel, chalcopyrite for copper, with the PGMs platinum, palladium, rhodium, iridium, ruthenium, and osmium, as well as, gold included in sperrylite, merenskyite, sudburyite, and other lesser known minerals that are often associated with magnetite, pyrrhotite, chalcopyrite, and pentlandite, along with cobaltite for cobalt.

1.4 Drill Hole and Assay Database

The sample database supplied for the Wellgreen Project contains results from 776 surface and underground drill holes completed on the property since 1952. Prior to 2006, drill core was selectively sampled in areas considered to have economic potential based on visual logging. Wellgreen Platinum assayed non-sampled intervals from the 1987-88 drill programs in 2013 and re-assayed intervals that had been previously analyzed.

Wellgreen Platinum continues to conduct exploration and development activities at the Wellgreen Project, such as drilling surface exploration drill holes into identified targets that have the potential to increase the size of the resource and to enhance Wellgreen Platinum's understanding of the resource.

1.5 Metallurgical Testing

Studies in 2013 and 2014 were completed by SGS Lakefield Research Limited (SGS) and XPS Consulting & Test work Services (XPS), a unit of GlencoreXstrata, along with previous studies undertaken by SGS and G&T Metallurgical Services Ltd (G&T), testing included batch and locked-cycle testing on 195 drill core samples from across the main Wellgreen resource area. Key findings are as follows:

- Metallurgical testwork shows improved recoveries for all major metals using conventional flotation in each metallurgical domain, versus assumptions in the 2012 Preliminary Economic Assessment, with recoveries significantly increased by 35% for platinum and 13% for nickel.
- Results indicate production of a high value bulk nickel-copper-PGM concentrate with grades of 6-10% nickel and 8-12% copper with 11-14 g/t 3E (platinum, palladium and gold) plus an additional 1-4 g/t of rare PGMs (rhodium, iridium, osmium and ruthenium).
- Improved conventional flotation metal recovery was attained by:
 - Recognition of three major geologic and metallurgical domains;
 - Optimization of grind size, reagent selection, pH and conditioning time by domain; and
 - Use of a magnetic separation process with re-grinding of magnetic material for some domains.
- Testing included bulk flotation processes, sequential flotation and bulk separation to produce individual high quality nickel and copper concentrates, which will be assessed further in the future.
- Additional secondary recovery processes have also been identified which could increase extraction of the unrecovered PGM material.

Future mine modelling will focus on the extraction of the higher grade, Gabbro/Massive Sulphides and Clinopyroxenite/Pyroxenite domains with Peridotite material being stockpiled for future processing. On this basis, the initial years of the Life of Mine Plan concentrates produced are anticipated to grade 6-10% nickel with 8-12% copper and 11-14 g/t 3E (platinum, palladium, and gold) plus an additional 1-4 g/t of rare PGMs rhodium, iridium, osmium and ruthenium. The blended recovery for these two main domains is estimated to be approximately 77% Ni, 89% Cu, 64% Co, 62% Pt, 75% Pd, 67% Au, and 70% Ag.

Further details are presented in Section 13 of this report.

1.6 Mineral Resources

The Wellgreen PGM-Ni-Cu Project mineral resource estimate was prepared by Ronald G. Simpson, P.Geo., of GeoSim Services Inc., an independent qualified person within the meaning of National Instrument 43-101 – *Standards of Disclosure for Mineral Projects* (NI 43-101).

The updated Wellgreen Platinum mineral resource estimate incorporates data derived from new drilling and historic re-assaying conducted since 2012, which totaled nearly 40,000 metres. This data was used along with other available historical data, some of which was re-logged, to develop a geologic model for the Wellgreen deposit that incorporates lithology and uses wire frames that constrain massive sulphide mineralization and unmineralized zones. Block grades were estimated using the Inverse Distance cubed (ID³) method and search parameters derived from variography and zone geometry.

Mineral resources are classified in accordance with the CIM Definition Standards for Mineral Resources and Mineral Reserves.

Table 1-1 presents the mineral resource estimate for the Wellgreen Project at a base case cut-off grade of 0.15% Ni Equivalent (or 0.57 g/t Pt Equivalent).

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	92,293	0.260	0.155	0.015	0.252	0.246	0.052	0.550	0.449	1.713
Indicated	237,276	0.261	0.135	0.015	0.231	0.238	0.042	0.511	0.434	1.656
Total M&I	329,569	0.261	0.141	0.015	0.237	0.240	0.045	0.522	0.438	1.672
Inferred	846,389	0.237	0.139	0.015	0.234	0.226	0.047	0.507	0.412	1.571

Table 1-1 Mineral Resource at a 0.15% NiEq cut-off

Notes:

1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.

 Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x 100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.

 Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have not been adjusted to reflect metallurgical recoveries.

4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).

5. Totals may not sum due to rounding.

6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

7. NiEq% = Ni%+ Cu% x 3.00/8.35 + Co% x 13.00/8.35 + Pt [g/t]/31.103 x 1,500/8.35/22.04 + Pd [g/t]/31.103 x 750/8.35/22.04 + Au [g/t]/31.103 x 1,250/8.35/22.04.

In addition, Table 1-2 below shows the higher grade portion of the resource within the constrained pit at a 1.9 g/t Pt Eq. or 0.50% Ni Eq. cut-off.

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	21,854	0.326	0.301	0.019	0.454	0.366	0.103	0.923	0.653	2.492
Indicated	50,264	0.334	0.286	0.019	0.455	0.373	0.090	0.919	0.653	2.493
Total M&I	72,117	0.332	0.291	0.019	0.455	0.371	0.094	0.920	0.653	2.493
Inferred	173,684	0.309	0.301	0.018	0.456	0.352	0.098	0.906	0.631	2.410

Table 1-2 Mineral Resource at a 0.50% NiEq cut-off

Notes:

1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.

 Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x 100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.

 Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have not been adjusted to reflect metallurgical recoveries.

4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).

5. Totals may not sum due to rounding.

6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

7. NiEq% = Ni%+ Cu% x 3.00/8.35 + Co% x 13.00/8.35 + Pt [g/t]/31.103 x 1,500/8.35/22.04 + Pd [g/t]/31.103 x 750/8.35/22.04 + Au [g/t]/31.103 x 1,250/8.35/22.04.

1.7 Interpretation and Conclusions

Drilling by Wellgreen Platinum in 2012 and 2013 has expanded the estimated PGM-Ni-Cu-Co mineral resource outlined by Tetra Tech in 2012. A detailed geologic model has been developed to constrain the updated mineral resource estimate. The new drilling results combined with re-sampling of core from the 1987-88 drill programs has increased confidence in the grade model and enabled classification of measured and indicated mineral resources.

Sample preparation, security and analysis are compliant with industry standards and are adequate to support a mineral resource estimate as defined under NI 43-101. Quality assurance and quality control with respect to the results received to date for the Wellgreen Platinum exploration programs meets the standard of industry best practice, and protocols have been well documented.

1.8 Recommendations

The mineral resource estimate presented in this Technical Report is supportive of further exploration activities at the Wellgreen project and it is suitable to be used for future mine planning assessments at the Wellgreen project.

GeoSim recommends that Wellgreen Platinum carry out the following \$1 million exploration expenditure program within the next 18 months to further expand and refine the mineral resource body at its Wellgreen PGM-Ni-Cu project:

- A. Remainder of 2014 \$430,000
 - 1. Complete re-logging of approximately 6,000 metres of remaining historical drill core;
 - Develop a sampling program to test for rare PGM metals to support potential future development of a resource for rhodium, iridium, ruthenium and osmium;
 - 3. Complete additional select drilling to confirm continuity of the higher grade material between the identified zones; and
 - 4. Continue surface water and ground water baseline environmental monitoring in support of existing permits and licenses, along with continued local community liaisons.
- B. 2015 \$570,000;
 - Continue surface water and ground water baseline environmental monitoring in support of existing permits and licenses, along with continued local community liaisons;
 - Complete underground ground control rehabilitation within existing underground workings to facilitate underground drilling and/or the ability to collect bulk samples from the Peridotite, Clinopyroxenite and Gabbro rock type domains;
 - 3. Conduct geophysical and/or soil sampling surveys at the Wellgreen, and Quill/Burwash areas, along trend of the Wellgreen resource area to define additional potential targets for future drilling; and
 - 4. Continue to refine resolution of topographic base for improved future mine planning.

2 INTRODUCTION AND TERMS OF REFERENCE

GeoSim Services Inc. (GeoSim) was requested by Wellgreen Platinum Ltd. (Wellgreen Platinum) to prepare a mineral resource estimate (the Technical Report) for the Wellgreen PGM-Ni-Cu Project located in the southwestern Yukon, Canada (the Project).

Wellgreen Platinum is a Canadian exploration and development company, headquartered in Vancouver, British Columbia.

2.1 Terms of Reference

GeoSim is independent of Wellgreen Platinum and has no beneficial interest in the Wellgreen PGM-Ni-Cu Project. Fees for this Technical Report are not dependent in whole or in part on any prior or future engagement or understanding resulting from the conclusions of this report. This Technical Report was prepared to support an updated mineral resource estimate.

2.2 Qualified Persons

Ronald G. Simpson, P Geo. (GeoSim Services Inc.) is the qualified person as defined in National Instrument 43-101 – *Standards of Disclosure for Mineral Projects* (NI 43-101).

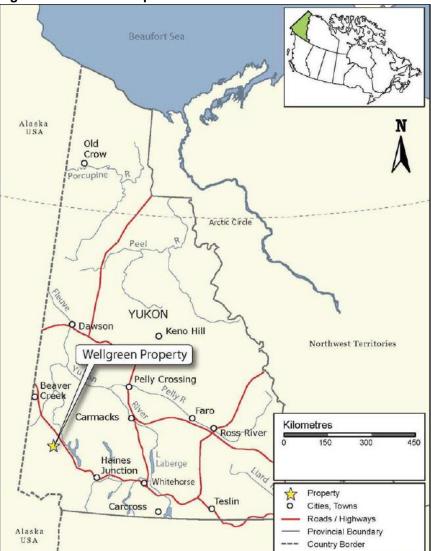
2.3 Site Visits and Scope of Personal inspection

The author of this Technical Report visited the site on September 17, 2013.

2.4 Effective Dates

The date of supply of the last analytical data used in the resource estimation was March 18, 2014. The effective date of the mineral resource estimate is July 23, 2014. The effective date of the Technical Report is September 8, 2014

2.5 Information sources and References


Reports and documents listed in Section 19 References were used to support the preparation of the Report.

3 RELIANCE ON OTHER EXPERTS

GeoSim has not conducted independent land status evaluations and has relied upon these statements and updated information from Wellgreen Platinum regarding property status, legal title and environmental compliance for the Project (Sections 4.2 to 4.5), which GeoSim believes to be accurate.

4 PROPERTY DESCRIPTION AND LOCATION

The Property is located approximately 317 kilometres northwest of Whitehorse in southwestern Yukon, at an approximate latitude: 61°28'N, longitude: 139°32'W on NTS map sheet 115G/05 and 115G/06 (Figure 4-1). The project is accessible by a 14 kilometre road from the paved all-weather Alaska Highway to the north and east. The Property lies within the Kluane First Nation core area as defined by their treaty with Canada and the Yukon Government.

Figure 4-1 Location Map

4.1 Tenure History

Prospectors W. Green, C. Aird and C. Hankins staked the first recorded mineral claims on the Wellgreen Property in 1952. Underground mining operations were initiated in 1972 by Hudson Yukon Mining Co. Ltd (Hudson Yukon Mining), a subsidiary of Hudson Bay Mining Co. Ltd. (HudBay) and ceased in 1973. The Property has changed ownership several times over the last sixty years as outlined in Chapter 6. Wellgreen Platinum has had ownership of the Property since 2011.

4.2 Mineral Tenure

The description below and the list of claims provided in Table 4-1 have been derived from records and information supplied by Wellgreen Platinum and sourced from the Yukon Mining Recorder. A map of Wellgreen Platinum's claims is shown in Figure 4-2.

The Property is comprised of 345 mineral claims in four groups totaling 5,933 hectares. The claims were staked as early as 1952. Each claim is a Quartz Mining Claim with expiry dates that range from February 2015 to February 2032. The claims cover the known Wellgreen deposit as well as the Quill, Burwash and Arch properties. The Wellgreen deposit is located on 13 Quartz Mining Leases which all have an expiry date of December 5, 2020. The additional Wellgreen Platinum claims are located contiguous to the known deposit. The Wellgreen Platinum claims are 100% owned, directly or indirectly, by Wellgreen Platinum.

In the Yukon, all work undertaken on the surface for hard rock mineral claims and leases is regulated under the Quartz Mining Act (QMA) through the Quartz Mining Land Use Regulation and is managed by the Mining Recorder's Office.

A mineral claim is a parcel of land located or granted for hard rock mining. A claim also includes any ditches or water rights used for mining the claim, and all other things belonging to or used in the working of the claim for mining purposes. The holder of a mineral claim is entitled to all minerals found in veins or lodes, together with the right to enter on and use and occupy the surface of the claim for the efficient and miner-like operation of the mines and minerals contained in the claim. Continued tenure to the mineral rights is dependent upon work performed on the claim or a group of claims. Renewal of a quartz claim requires Cdn\$100 of work be done per claim per year. Where work is not performed, the claimant may make a payment in lieu of work.

A Quartz Mining Lease is the most secure form of mineral title in the Yukon. A lease is applied for when a company is contemplating production and would like to bring their claims to lease. This relieves the company of the annual work requirement – however there are annual rental fees of Cdn\$200 per lease. Quartz Mining Leases are issued for 21 years and can be renewed for an additional 21 year term, provided that during the original term of the lease, all conditions of the lease and provisions of the legislation have been adhered to.

Wellgreen Platinum's interest in the Property also consists of two surface leases issued by the Government of Canada and administered by the Government of Yukon: Lease 115G05-001 and 115G11.003, as described below and in Table 4-2.

Lease 115G05-001 covers a 69.7 hectare parcel of land located near the headwaters of Nickel Creek proximal to the known Wellgreen deposit (Figure 4-3). Various operators have conducted historic exploration activities on this parcel of land since the 1950s, and exploration activities have been carried out by Northern Platinum Ltd. (Northern Platinum) and Coronation Minerals Ltd. (Coronation Minerals) since the late 1990s. Northern Platinum held a lease on this same area from the early 1990s until October 31, 2011. Prior to expiration, the 21-year lease was assigned to Prophecy Platinum Corp. (now Wellgreen Platinum), who then applied for renewal of the lease. This lease was renewed on June 1, 2013 and expires on May 31, 2034.

Lease 115G11-003 covers a 21.7 hectare parcel of land located adjacent to kilometre 1728 on the Alaska Highway (Figure 4-3). This 10-year lease was granted on November 1, 2012

and expires on October 31, 2022. Northern Platinum held a similar but larger (62.7 hectares) lease parcel from November 1, 2001 until October 31, 2011. This lease included the historic Hudson Yukon Mining mill site used in the 1970s as part of the Wellgreen underground mining operation. Since the late 1990s, Northern Platinum used the old mill site for its core shack and as access to the Wellgreen Property. Pursuant to the requirements of the previous surface lease, which included the old mill site, Northern Platinum finalized a Reclamation Plan for the Mill Site, which was approved by the Government of Yukon in early 2010. Final accepted closure of the Reclamation Plan remains outstanding and is in discussion with the Government of Yukon.

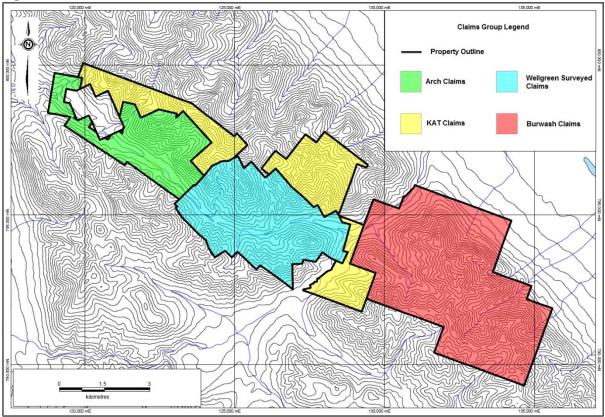
Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255471078	YA94968	BARNY 1	1	0905144 B.C. Ltd	21.77	11/02/2016
255436862	YA96005	BARNY 10	10	0905144 B.C. Ltd	21.33	11/02/2016
255480289	YA96006	BARNY 11	11	0905144 B.C. Ltd	21.45	11/02/2016
255374427	YA96007	BARNY 12	12	0905144 B.C. Ltd	20.97	11/02/2016
255395375	YA96008	BARNY 13	13	0905144 B.C. Ltd	18.56	11/02/2016
255275812	YA96009	BARNY 14	14	0905144 B.C. Ltd	17.43	11/02/2016
255386642	YA96867	BARNY 19	19	0905144 B.C. Ltd	21.40	11/02/2016
255368165	YA94969	BARNY 2	2	0905144 B.C. Ltd	20.91	11/02/2016
255372140	YA96868	BARNY 20	20	0905144 B.C. Ltd	21.55	11/02/2016
255439972	YA96869	BARNY 21	21	0905144 B.C. Ltd	21.28	11/02/2016
255439973	YA96870	BARNY 22	22	0905144 B.C. Ltd	21.46	11/02/2016
255281896	YA96871	BARNY 23	23	0905144 B.C. Ltd	22.38	11/02/2016
255364888	YA96872	BARNY 24	24	0905144 B.C. Ltd	22.20	11/02/2016
255482398	YA96873	BARNY 25	25	0905144 B.C. Ltd	10.01	11/02/2016
255303134	YA96874	BARNY 26	26	0905144 B.C. Ltd	17.26	11/02/2016
255237338	YA96875	BARNY 27	27	0905144 B.C. Ltd	17.67	11/02/2016
255244829	YA96876	BARNY 28	28	0905144 B.C. Ltd	17.86	11/02/2016
255374482	YA96877	BARNY 29	29	0905144 B.C. Ltd	17.61	11/02/2016
255368162	YA94970	BARNY 3	3	0905144 B.C. Ltd	21.30	11/02/2016
255238220	YA96878	BARNY 30	30	0905144 B.C. Ltd	8.90	11/02/2016
255343901	YA96879	BARNY 31	31	0905144 B.C. Ltd	13.52	11/02/2016
255343902	YA96880	BARNY 32	32	0905144 B.C. Ltd	20.44	11/02/2016
255286354	YA97896	BARNY 33	33	0905144 B.C. Ltd	5.83	11/02/2016
255401444	YA97897	BARNY 34	34	0905144 B.C. Ltd	12.61	11/02/2016
255307009	YA97898	BARNY 35	35	0905144 B.C. Ltd	17.53	11/02/2016
255466384	YA97899	BARNY 36	36	0905144 B.C. Ltd	15.97	11/02/2016
255445219	YA97900	BARNY 37	37	0905144 B.C. Ltd	17.73	11/02/2016
255341634	YA97901	BARNY 38	38	0905144 B.C. Ltd	11.22	11/02/2016
255319213	YA97902	BARNY 39	39	0905144 B.C. Ltd	11.49	11/02/2016
255376993	YA94971	BARNY 4	4	0905144 B.C. Ltd	20.27	11/02/2016
255298951	YA97904	BARNY 41	41	0905144 B.C. Ltd	19.04	11/02/2016
255488160	YA97905	BARNY 42	42	0905144 B.C. Ltd	14.77	11/02/2016

Table 4-1 Mineral Claims

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255286355	YA97906	BARNY 43	43	0905144 B.C. Ltd	13.13	11/02/2016
255307002	YA97908	BARNY 45	45	0905144 B.C. Ltd	14.80	11/02/2016
255466382	YA97910	BARNY 47	47	0905144 B.C. Ltd	15.04	11/02/2016
255219141	YA97911	BARNY 48	48	0905144 B.C. Ltd	9.37	11/02/2016
255214334	YA97912	BARNY 49	49	0905144 B.C. Ltd	12.96	11/02/2016
255267745	YA94972	BARNY 5	5	0905144 B.C. Ltd	21.28	11/02/2016
255321701	YB08307	BARNY 50	50	0905144 B.C. Ltd	5.32	11/02/2016
255297032	YA94973	BARNY 6	6	0905144 B.C. Ltd	20.66	11/02/2016
255345079	YA96002	BARNY 7	7	0905144 B.C. Ltd	21.86	11/02/2016
255259002	YA96003	BARNY 8	8	0905144 B.C. Ltd	14.28	11/02/2016
255265611	YA96004	BARNY 9	9	0905144 B.C. Ltd	21.82	11/02/2016
255417668	63029	BETTY 1	1	0905144 B.C. Ltd	10.38	05/12/2020
255417669	63030	BETTY 2	2	0905144 B.C. Ltd	11.58	05/12/2020
255202620	63031	BETTY 3	3	0905144 B.C. Ltd	11.83	05/12/2020
255353542	63032	BETTY 4	4	0905144 B.C. Ltd	10.93	05/12/2020
255273340	63033	BETTY 5	5	0905144 B.C. Ltd	18.41	05/12/2020
255305051	63034	BETTY 6	6	0905144 B.C. Ltd	17.59	05/12/2020
255374194	63035	BETTY 7	7	0905144 B.C. Ltd	19.50	05/12/2020
255239243	63036	BETTY 8	8	0905144 B.C. Ltd	21.20	05/12/2020
255448781	YC26564	BUR 1	1	Wellgreen Platinum Ltd.	20.90	23/02/2028
255341170	YC26573	BUR 10	10	Wellgreen Platinum Ltd.	20.90	23/02/2028
255470107	YC26574	BUR 11	11	Wellgreen Platinum Ltd.	20.91	23/02/2028
255365682	YC26575	BUR 12	12	Wellgreen Platinum Ltd.	20.90	23/02/2028
255287494	YC26576	BUR 13	13	Wellgreen Platinum Ltd.	20.90	23/02/2028
255208677	YC26577	BUR 14	14	Wellgreen Platinum Ltd.	20.90	23/02/2028
255204216	YC26578	BUR 15	15	Wellgreen Platinum Ltd.	20.86	23/02/2028
255311044	YC26579	BUR 16	16	Wellgreen Platinum Ltd.	20.90	23/02/2028
255311043	YC26580	BUR 17	17	Wellgreen Platinum Ltd.	20.88	23/02/2028
255449662	YC26581	BUR 18	18	Wellgreen Platinum Ltd.	20.88	23/02/2028
255390297	YC26582	BUR 19	19	Wellgreen Platinum Ltd.	20.86	23/02/2028
255444256	YC26565	BUR 2	2	Wellgreen Platinum Ltd.	20.92	23/02/2028
255297900	YC26583	BUR 20	20	Wellgreen Platinum Ltd.	20.90	23/02/2028
255235072	YC26584	BUR 21	21	Wellgreen Platinum Ltd.	20.86	23/02/2028
255330008	YC26585	BUR 22	22	Wellgreen Platinum Ltd.	20.90	23/02/2028
255333327	YC26586	BUR 23	23	Wellgreen Platinum Ltd.	20.86	23/02/2028
255361429	YC26587	BUR 24	24	Wellgreen Platinum Ltd.	20.90	23/02/2028
255425063	YC26588	BUR 25	25	Wellgreen Platinum Ltd.	20.86	23/02/2028
255420340	YC26589	BUR 26	26	Wellgreen Platinum Ltd.	20.90	23/02/2028
255420339	YC26590	BUR 27	27	Wellgreen Platinum Ltd.	20.90	23/02/2028
255432346	YC26591	BUR 28	28	Wellgreen Platinum Ltd.	20.90	23/02/2028
255212022	YC26592	BUR 29	29	Wellgreen Platinum Ltd.	20.90	23/02/2028

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255407168	YC26566	BUR 3	3	Wellgreen Platinum Ltd.	20.90	23/02/2028
255239094	YC26593	BUR 30	30	30 Wellgreen Platinum Ltd.		23/02/2028
255261006	YC26594	BUR 31	31	Wellgreen Platinum Ltd.	20.90	23/02/2028
255314320	YC26595	BUR 32	32	Wellgreen Platinum Ltd.	20.90	23/02/2028
255252928	YC26596	BUR 33	33	Wellgreen Platinum Ltd.	20.90	23/02/2028
255392466	YC26597	BUR 34	34	Wellgreen Platinum Ltd.	20.90	23/02/2028
255391892	YC26598	BUR 35	35	Wellgreen Platinum Ltd.	20.90	23/02/2028
255305851	YC26599	BUR 36	36	Wellgreen Platinum Ltd.	20.84	23/02/2028
255420346	YC26600	BUR 37	37	Wellgreen Platinum Ltd.	20.90	23/02/2028
255432347	YC26601	BUR 38	38	Wellgreen Platinum Ltd.	20.90	23/02/2028
255212023	YC26602	BUR 39	39	Wellgreen Platinum Ltd.	20.90	23/02/2028
255408233	YC26567	BUR 4	4	Wellgreen Platinum Ltd.	20.90	23/02/2028
255239093	YC26603	BUR 40	40	Wellgreen Platinum Ltd.	20.90	23/02/2028
255261007	YC26604	BUR 41	41	Wellgreen Platinum Ltd.	20.90	23/02/2028
255314319	YC26605	BUR 42	42	Wellgreen Platinum Ltd.	20.90	23/02/2028
255252927	YC26606	BUR 43	43	Wellgreen Platinum Ltd.	20.90	23/02/2028
255392465	YC26607	BUR 44	44	Wellgreen Platinum Ltd.	20.90	23/02/2028
255391891	YC26608	BUR 45	45	Wellgreen Platinum Ltd.	20.93	23/02/2028
255305852	YC26609	BUR 46	46	Wellgreen Platinum Ltd.	20.90	23/02/2028
255305853	YC26610	BUR 47	47	Wellgreen Platinum Ltd.	20.90	23/02/2028
255199557	YC26611	BUR 48	48	Wellgreen Platinum Ltd.	20.90	23/02/2028
255213972	YC26612	BUR 49	49	Wellgreen Platinum Ltd.	20.90	23/02/2028
255194695	YC26568	BUR 5	5	Wellgreen Platinum Ltd.	20.90	23/02/2028
255213398	YC26613	BUR 50	50	Wellgreen Platinum Ltd.	20.90	23/02/2028
255361855	YC26614	BUR 51	51	Wellgreen Platinum Ltd.	20.90	23/02/2028
255263047	YC26615	BUR 52	52	Wellgreen Platinum Ltd.	20.90	23/02/2028
255372816	YC26616	BUR 53	53	Wellgreen Platinum Ltd.	20.90	23/02/2028
255343156	YC26617	BUR 54	54	Wellgreen Platinum Ltd.	20.90	23/02/2028
255191470	YC26618	BUR 55	55	Wellgreen Platinum Ltd.	20.90	23/02/2028
255265699	YC26619	BUR 56	56	Wellgreen Platinum Ltd.	20.90	23/02/2028
255265700	YC26620	BUR 57	57	Wellgreen Platinum Ltd.	20.90	23/02/2028
255424058	YC26621	BUR 58	58	Wellgreen Platinum Ltd.	20.90	23/02/2028
255186696	YC26569	BUR 6	6	Wellgreen Platinum Ltd.	20.90	23/02/2028
255186695	YC26570	BUR 7	7	Wellgreen Platinum Ltd.	20.89	23/02/2028
255188306	YC26571	BUR 8	8	Wellgreen Platinum Ltd.	20.90	23/02/2028
255313686	YC26572	BUR 9	9	Wellgreen Platinum Ltd.	20.88	23/02/2028
255415544	YB36423	BURWASH 1	1	Wellgreen Platinum Ltd.	20.90	23/02/2032
255278679	YC18485	BURWASH 10	10	Wellgreen Platinum Ltd.	17.35	23/02/2028
255433321	YC18486	BURWASH 11	11	Wellgreen Platinum Ltd.	3.55	23/02/2028
255447087	YC18487	BURWASH 12	12	Wellgreen Platinum Ltd.	20.90	23/02/2028
255256822	YC18488	BURWASH 13	13	Wellgreen Platinum Ltd.	20.90	23/02/2028

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255380089	YC18489	BURWASH 14	14	Wellgreen Platinum Ltd.	20.90	23/02/2028
255380085	YC18490	BURWASH 15	15	Wellgreen Platinum Ltd.	20.90	23/02/2028
255231673	YC18491	BURWASH 16	16	Wellgreen Platinum Ltd.	20.89	23/02/2028
255310690	YC18492	BURWASH 17	17	Wellgreen Platinum Ltd.	20.90	23/02/2028
255419833	YC18493	BURWASH 18	18	Wellgreen Platinum Ltd.	20.90	23/02/2028
255215793	YC18494	BURWASH 19	19	Wellgreen Platinum Ltd.	20.90	23/02/2028
255224793	YB36424	BURWASH 2	2	Wellgreen Platinum Ltd.	20.90	23/02/2032
255301450	YC18495	BURWASH 20	20	Wellgreen Platinum Ltd.	20.90	23/02/2028
255189337	YC18496	BURWASH 21	21	Wellgreen Platinum Ltd.	20.90	23/02/2028
255412582	YC18497	BURWASH 22	22	Wellgreen Platinum Ltd.	20.90	23/02/2028
255469116	YC18498	BURWASH 23	23	Wellgreen Platinum Ltd.	20.92	23/02/2028
255298647	YC18499	BURWASH 24	24	Wellgreen Platinum Ltd.	20.90	23/02/2028
255380086	YC18500	BURWASH 25	25	Wellgreen Platinum Ltd.	20.92	23/02/2028
255231672	YC18501	BURWASH 26	26	Wellgreen Platinum Ltd.	20.88	23/02/2028
255310689	YC18502	BURWASH 27	27	Wellgreen Platinum Ltd.	20.90	23/02/2028
255419832	YC18503	BURWASH 28	28	Wellgreen Platinum Ltd.	20.90	23/02/2028
255215792	YC18504	BURWASH 29	29	Wellgreen Platinum Ltd.	20.90	23/02/2028
255225554	YB36425	BURWASH 3	3	Wellgreen Platinum Ltd.	20.90	23/02/2032
255301451	YC18505	BURWASH 30	30	Wellgreen Platinum Ltd.	20.90	23/02/2028
255189336	YC18506	BURWASH 31	31	Wellgreen Platinum Ltd.	20.90	23/02/2028
255412581	YC18507	BURWASH 32	32	Wellgreen Platinum Ltd.	20.90	23/02/2028
255469117	YC18508	BURWASH 33	33	Wellgreen Platinum Ltd.	20.90	23/02/2028
255268606	YB36426	BURWASH 4	4	Wellgreen Platinum Ltd.	20.90	23/02/2032
255465192	YB36427	BURWASH 5	5	Wellgreen Platinum Ltd.	20.90	23/02/2032
255220670	YB36428	BURWASH 6	6	Wellgreen Platinum Ltd.	20.90	23/02/2032
255296805	YB36429	BURWASH 7	7	Wellgreen Platinum Ltd.	20.90	23/02/2032
255296804	YB36430	BURWASH 8	8	Wellgreen Platinum Ltd.	20.90	23/02/2032
255356452	YB36431	BURWASH 9	9	Wellgreen Platinum Ltd.	20.90	23/02/2032
255483424	60775	DISCOVERY 1	1	0905144 B.C. Ltd	10.49	05/12/2020
255371918	60776	DISCOVERY 2	2	0905144 B.C. Ltd	10.50	05/12/2020
255398440	60777	DISCOVERY 3	3	0905144 B.C. Ltd	16.08	05/12/2020
255308986	60778	DISCOVERY 4	4	0905144 B.C. Ltd	16.82	05/12/2020
255483720	60779	DISCOVERY 5	5	0905144 B.C. Ltd	13.35	05/12/2020
255483723	60780	DISCOVERY 6	6	0905144 B.C. Ltd	16.69	05/12/2020
255387541	60781	DISCOVERY 7	7	0905144 B.C. Ltd	13.66	05/12/2020
255242566	60782	DISCOVERY 8	8	0905144 B.C. Ltd	11.57	05/12/2020
255465231	63001	IRISH 1	1	0905144 B.C. Ltd	19.66	05/12/2020
255304897	63002	IRISH 2	2	0905144 B.C. Ltd	15.14	05/12/2020
255269815	63003	IRISH 3	3	0905144 B.C. Ltd	11.06	05/12/2020
255206646	63006	IRISH 6	6	0905144 B.C. Ltd	16.41	05/12/2020
255440541	64828	JEEP 234	234	0905144 B.C. Ltd	4.22	05/12/2020


Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255227576	64830	JEEP 236	236	0905144 B.C. Ltd	5.61	05/12/2020
255455244	64122	JEEP 238	238	0905144 B.C. Ltd	6.75	05/12/2020
255402797	64832	JEEP 240	240	0905144 B.C. Ltd	6.21	05/12/2020
255306668	64834	JEEP 242	242	0905144 B.C. Ltd	8.00	05/12/2020
255267816	64836	JEEP 244	244	0905144 B.C. Ltd	12.24	05/12/2020
255488272	66569	JEEP 265	265	0905144 B.C. Ltd	9.98	05/12/2020
255433251	66571	JEEP 267	267	0905144 B.C. Ltd	19.70	05/12/2020
255196868	66572	JEEP 268	268	0905144 B.C. Ltd	18.46	05/12/2020
255344858	64742	JEEP 96	96	0905144 B.C. Ltd	11.93	05/12/2020
255420333	YD127061	KAT 1	1	0905144 B.C. Ltd	17.60	05/02/2015
255395583	YD127070	KAT 10	10	0905144 B.C. Ltd	3.06	05/12/2016
255220014	YD127071	KAT 11	11	0905144 B.C. Ltd	5.63	05/12/2016
255229506	YD127072	KAT 12	12	0905144 B.C. Ltd	19.87	05/12/2016
255202477	YD127073	KAT 13	13	0905144 B.C. Ltd	2.73	05/12/2016
255307546	YD127074	KAT 14	14	0905144 B.C. Ltd	20.57	05/12/2016
255243017	YD127075	KAT 15	15	0905144 B.C. Ltd	5.94	05/12/2016
255228993	YD127076	KAT 16	16	0905144 B.C. Ltd	20.90	05/12/2016
255261062	YD127077	KAT 17	17	0905144 B.C. Ltd	6.52	05/12/2016
255274249	YD127078	KAT 18	18	0905144 B.C. Ltd	20.90	05/12/2016
255375030	YD127079	КАТ 19	19	0905144 B.C. Ltd	11.07	05/12/2016
255306298	YD127062	KAT 2	2	0905144 B.C. Ltd	20.90	05/02/2015
255375031	YD127080	КАТ 20	20	0905144 B.C. Ltd	20.90	05/12/2016
255335925	YD127081	KAT 21	21	0905144 B.C. Ltd	15.54	05/12/2016
255319961	YD127082	KAT 22	22	0905144 B.C. Ltd	20.90	05/12/2016
255226927	YD127083	КАТ 23	23	0905144 B.C. Ltd	10.86	05/12/2016
255228115	YD127084	KAT 24	24	0905144 B.C. Ltd	20.90	05/12/2016
255463251	YD127085	KAT 25	25	0905144 B.C. Ltd	13.90	05/12/2016
255475900	YD127086	KAT 26	26	0905144 B.C. Ltd	20.90	05/12/2016
255483347	YD127087	KAT 27	27	0905144 B.C. Ltd	7.65	05/12/2016
255324089	YD127088	KAT 28	28	0905144 B.C. Ltd	15.69	05/12/2016
255421725	YD127089	КАТ 29	29	0905144 B.C. Ltd	7.86	05/12/2016
255464975	YD127063	KAT 3	3	0905144 B.C. Ltd	18.08	05/02/2015
255421724	YD127090	КАТ 30	30	0905144 B.C. Ltd	2.44	05/12/2016
255391234	YD127091	KAT 31	31	0905144 B.C. Ltd	2.10	05/12/2016
255351085	YD127092	KAT 32	32	0905144 B.C. Ltd	0.92	05/12/2016
255446367	YD127093	KAT 33	33	0905144 B.C. Ltd	1.14	05/12/2016
255250742	YD127094	KAT 34	34	0905144 B.C. Ltd	2.84	05/12/2016
255342915	YD127095	KAT 35	35	0905144 B.C. Ltd	5.49	05/12/2017
255486397	YD127096	KAT 36	36	0905144 B.C. Ltd	3.26	05/12/2017
255353924	YD127097	KAT 37	37	0905144 B.C. Ltd	16.92	05/12/2017
255442257	YD127098	KAT 38	38	0905144 B.C. Ltd	20.02	05/12/2017

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255216253	YD127099	KAT 39	39	0905144 B.C. Ltd	16.97	05/12/2017
255371098	YD127064	KAT 4	4	0905144 B.C. Ltd	14.39	05/02/2015
255421726	YD127100	КАТ 40	40	0905144 B.C. Ltd	20.02	05/12/2017
255391233	YD127101	KAT 41	41	0905144 B.C. Ltd	16.02	05/12/2017
255351084	YD127102	KAT 42	42	0905144 B.C. Ltd	20.02	05/12/2017
255459530	YE70953	KAT 43	43	0905144 B.C. Ltd	14.24	05/12/2017
255254398	YE70954	КАТ 44	44	0905144 B.C. Ltd	20.02	05/12/2017
255335825	YE70955	KAT 45	45	0905144 B.C. Ltd	10.36	05/12/2017
255209640	YE70956	KAT 46	46	0905144 B.C. Ltd	20.02	05/12/2017
255243515	YE70957	KAT 47	47	0905144 B.C. Ltd	17.69	05/12/2017
255383568	YE70958	KAT 48	48	0905144 B.C. Ltd	13.71	05/12/2017
255408243	YE70959	КАТ 49	49	0905144 B.C. Ltd	20.90	05/12/2017
255222385	YD127065	KAT 5	5	0905144 B.C. Ltd	16.65	05/02/2015
255408240	YE70960	КАТ 50	50	0905144 B.C. Ltd	19.89	05/12/2017
255239361	YE70961	KAT 51	51	0905144 B.C. Ltd	20.90	05/12/2017
255214708	YE70962	KAT 52	52	0905144 B.C. Ltd	13.92	05/12/2017
255370850	YE70963	KAT 53	53	0905144 B.C. Ltd	20.90	05/12/2017
255285825	YE70964	KAT 54	54	0905144 B.C. Ltd	12.49	05/12/2017
255485235	YE70965	KAT 55	55	0905144 B.C. Ltd	20.90	05/12/2017
255233304	YE70966	KAT 56	56	0905144 B.C. Ltd	20.90	05/12/2017
255416376	YE70967	KAT 57	57	0905144 B.C. Ltd	20.90	05/12/2017
255472178	YE70968	KAT 58	58	0905144 B.C. Ltd	20.90	05/12/2017
255208652	YE70969	КАТ 59	59	0905144 B.C. Ltd	20.90	05/12/2017
255256264	YD127066	KAT 6	6	0905144 B.C. Ltd	10.11	05/02/2015
255208651	YE70970	КАТ 60	60	0905144 B.C. Ltd	20.90	05/12/2017
255299226	YE70971	KAT 61	61	0905144 B.C. Ltd	20.90	05/12/2017
255385373	YE70972	KAT 62	62	0905144 B.C. Ltd	20.90	05/12/2017
255302490	YE70973	KAT 63	63	0905144 B.C. Ltd	20.90	05/12/2017
255401861	YE70974	KAT 64	64	0905144 B.C. Ltd	20.90	05/12/2017
255430256	YE70975	KAT 65	65	0905144 B.C. Ltd	20.90	05/12/2017
255479008	YE70976	KAT 66	66	0905144 B.C. Ltd	20.90	05/12/2017
255450671	YE70977	KAT 67	67	0905144 B.C. Ltd	20.90	05/12/2017
255379738	YE70978	KAT 68	68	0905144 B.C. Ltd	20.90	05/12/2017
255208987	YE70979	КАТ 69	69	0905144 B.C. Ltd	16.97	05/12/2017
255321350	YD127067	KAT 7	7	0905144 B.C. Ltd	16.45	05/12/2016
255208988	YE70980	KAT 70	70	0905144 B.C. Ltd	19.65	05/12/2017
255186557	YE70981	KAT 71	71	0905144 B.C. Ltd	8.54	05/12/2017
255411115	YE70982	KAT 72	72	0905144 B.C. Ltd	19.65	05/12/2017
255300597	YE70983	KAT 73	73	0905144 B.C. Ltd	14.09	05/12/2017
255212296	YE70984	KAT 74	74	0905144 B.C. Ltd	18.21	05/12/2017
255414584	YE70985	KAT 75	75	0905144 B.C. Ltd	2.86	05/12/2017

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255349638	YE70986	КАТ 76	76	0905144 B.C. Ltd	7.56	05/12/2017
255284606	YE70987	KAT 77	77	0905144 B.C. Ltd	4.35	05/12/2017
255380687	YE70988	КАТ 78	78	0905144 B.C. Ltd	8.00	05/12/2017
255374635	YE70989	КАТ 79	79	0905144 B.C. Ltd	9.84	05/12/2017
255222585	YD127068	KAT 8	8	0905144 B.C. Ltd	6.60	05/12/2016
255374634	YE70990	KAT 80	80	0905144 B.C. Ltd	8.44	05/12/2017
255484112	YE70991	KAT 81	81	0905144 B.C. Ltd	10.92	05/12/2017
255360105	YE70992	KAT 82	82	0905144 B.C. Ltd	5.71	05/12/2017
255338965	YE70993	KAT 83	83	0905144 B.C. Ltd	11.70	05/12/2016
255465014	YE70994	KAT 84	84	0905144 B.C. Ltd	19.60	05/12/2016
255269253	YE70995	KAT 85	85	0905144 B.C. Ltd	8.78	05/12/2016
255394142	YE70996	KAT 86	86	0905144 B.C. Ltd	19.49	05/12/2016
255395582	YD127069	КАТ 9	9	0905144 B.C. Ltd	16.10	05/12/2016
255246379	63021	MAC 1	1	0905144 B.C. Ltd	12.62	05/12/2020
255339148	63022	MAC 2	2	0905144 B.C. Ltd	12.47	05/12/2020
255488812	63023	MAC 3	3	0905144 B.C. Ltd	14.20	05/12/2020
255292889	63024	MAC 4	4	0905144 B.C. Ltd	11.19	05/12/2020
255358734	63025	MAC 5	5	0905144 B.C. Ltd	9.82	05/12/2020
255188418	63026	MAC 6	6	0905144 B.C. Ltd	8.44	05/12/2020
255485515	63027	MAC 7	7	0905144 B.C. Ltd	7.64	05/12/2020
255451126	63028	MAC 8	8	0905144 B.C. Ltd	13.84	05/12/2020
255248317	YA96015	MUS 12	12	0905144 B.C. Ltd	20.99	11/02/2016
255215036	YA96017	MUS 14	14	0905144 B.C. Ltd	20.37	11/02/2016
255479174	YA96019	MUS 16	16	0905144 B.C. Ltd	16.12	11/02/2016
255294268	YA94966	MUS 5	5	0905144 B.C. Ltd	20.87	11/02/2016
255348463	YA94967	MUS 6	6	0905144 B.C. Ltd	20.74	11/02/2016
255276532	70829	QUILL	0	0905144 B.C. Ltd	11.14	05/12/2020
255432273	60767	QUILL 1	1	0905144 B.C. Ltd	16.78	05/12/2020
255293495	60768	QUILL 2	2	0905144 B.C. Ltd	17.13	05/12/2020
255237754	60769	QUILL 3	3	0905144 B.C. Ltd	20.89	05/12/2020
255237753	60770	QUILL 4	4	0905144 B.C. Ltd	20.55	05/12/2020
255345310	60771	QUILL 5	5	0905144 B.C. Ltd	20.78	05/12/2020
255317542	60772	QUILL 6	6	0905144 B.C. Ltd	20.78	05/12/2020
255414585	60773	QUILL 7	7	0905144 B.C. Ltd	14.01	05/12/2020
255306630	60774	QUILL 8	8	0905144 B.C. Ltd	16.52	05/12/2020
255237331	60791	RAM 1	1	0905144 B.C. Ltd	15.76	05/12/2020
255194628	60792	RAM 2	2	0905144 B.C. Ltd	20.88	05/12/2020
255473495	60793	RAM 3	3	0905144 B.C. Ltd	20.07	05/12/2020
255321702	60794	RAM 4	4	0905144 B.C. Ltd	19.86	05/12/2020
255461652	60795	RAM 5	5	0905144 B.C. Ltd	7.89	05/12/2020
255295666	60796	RAM 6	6	0905144 B.C. Ltd	22.07	05/12/2020

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255484170	60797	RAM 7	7	0905144 B.C. Ltd	16.18	05/12/2020
255268746	60798	RAM 8	8	0905144 B.C. Ltd	13.55	05/12/2020
255290877	63037	RED 1	1	0905144 B.C. Ltd	15.34	05/12/2020
255422779	63038	RED 2	2	0905144 B.C. Ltd	13.53	05/12/2020
255371645	63039	RED 3	3	0905144 B.C. Ltd	16.09	05/12/2020
255371646	63040	RED 4	4	0905144 B.C. Ltd	20.69	05/12/2020
255230014	63041	RED 5	5	0905144 B.C. Ltd	20.87	05/12/2020
255373427	63042	RED 6	6	0905144 B.C. Ltd	15.65	05/12/2020
255296763	63043	RED 7	7	0905144 B.C. Ltd	15.46	05/12/2020
255428355	63044	RED 8	8	0905144 B.C. Ltd	19.10	05/12/2020
255307559	71432	ROSS 1	1	0905144 B.C. Ltd	16.47	05/12/2020
255232983	64076	ROSS 15	15	0905144 B.C. Ltd	20.74	05/12/2020
255438455	64077	ROSS 16	16	0905144 B.C. Ltd	20.74	05/12/2020
255246320	71433	ROSS 2	2	0905144 B.C. Ltd	19.75	05/12/2020
255476056	64066	ROSS 25	25	0905144 B.C. Ltd	15.94	05/12/2020
255369169	71434	ROSS 3	3	0905144 B.C. Ltd	13.18	05/12/2020
255299744	71435	ROSS 4	4	0905144 B.C. Ltd	11.97	05/12/2020
255208678	64086	ROSS 85	85	0905144 B.C. Ltd	20.88	05/12/2020
255334385	64087	ROSS 86	86	0905144 B.C. Ltd	21.11	05/12/2020
255308911	64084	ROSS 94	94	0905144 B.C. Ltd	22.04	05/12/2020
255343676	64085	ROSS 95	95	0905144 B.C. Ltd	23.86	05/12/2020
255375577	64587	ROSS 96	96	0905144 B.C. Ltd	23.98	05/12/2020
255465279	YC40144	RUB 1	1	Wellgreen Platinum Ltd.	20.90	23/02/2025
255209790	YC40153	RUB 10	10	Wellgreen Platinum Ltd.	20.90	23/02/2025
255311005	YC40154	RUB 11	11	Wellgreen Platinum Ltd.	20.90	23/02/2025
255191381	YC40155	RUB 12	12	Wellgreen Platinum Ltd.	20.90	23/02/2025
255282567	YC40156	RUB 13	13	Wellgreen Platinum Ltd.	20.90	23/02/2025
255479512	YC40157	RUB 14	14	Wellgreen Platinum Ltd.	20.90	23/02/2025
255391201	YC40158	RUB 15	15	Wellgreen Platinum Ltd.	20.90	23/02/2025
255292963	YC40159	RUB 16	16	Wellgreen Platinum Ltd.	20.90	23/02/2025
255292962	YC40160	RUB 17	17	Wellgreen Platinum Ltd.	20.90	23/02/2025
255323582	YC40161	RUB 18	18	Wellgreen Platinum Ltd.	20.90	23/02/2025
255468455	YC40162	RUB 19	19	Wellgreen Platinum Ltd.	20.90	23/02/2025
255272964	YC40145	RUB 2	2	Wellgreen Platinum Ltd.	20.90	23/02/2025
255403324	YC40163	RUB 20	20	Wellgreen Platinum Ltd.	20.90	23/02/2025
255263623	YC40164	RUB 21	21	Wellgreen Platinum Ltd.	20.77	23/02/2025
255400446	YC40165	RUB 22	22	Wellgreen Platinum Ltd.	20.90	23/02/2025
255262529	YC40166	RUB 23	23	Wellgreen Platinum Ltd.	14.03	23/02/2025
255443181	YC40167	RUB 24	24	Wellgreen Platinum Ltd.	20.90	23/02/2025
255329627	YC40168	RUB 25	25	Wellgreen Platinum Ltd.	20.90	23/02/2025
255472223	YC40169	RUB 26	26	Wellgreen Platinum Ltd.	20.90	23/02/2025

Quartz Claim #	Grant Number	Claim Name	Claim Number	Owner	Area (ha)	Expiry Date
255472226	YC40170	RUB 27	27	Wellgreen Platinum Ltd.	20.90	23/02/2025
255360592	YC40171	RUB 28	28	Wellgreen Platinum Ltd.	20.90	23/02/2025
255351307	YC40172	RUB 29	29	Wellgreen Platinum Ltd.	20.90	23/02/2025
255223558	YC40146	RUB 3	3	Wellgreen Platinum Ltd.	20.90	23/02/2025
255412399	YC40147	RUB 4	4	Wellgreen Platinum Ltd.	20.90	23/02/2025
255365449	YC40148	RUB 5	5	Wellgreen Platinum Ltd.	20.90	23/02/2025
255454703	YC40149	RUB 6	6	Wellgreen Platinum Ltd.	20.90	23/02/2025
255454702	YC40150	RUB 7	7	Wellgreen Platinum Ltd.	20.90	23/02/2025
255418583	YC40151	RUB 8	8	Wellgreen Platinum Ltd.	20.90	23/02/2025
255262760	YC40152	RUB 9	9	Wellgreen Platinum Ltd.	20.90	23/02/2025
255402284	63013	SAM 1	1	0905144 B.C. Ltd	6.04	05/12/2020
255373683	63014	SAM 2	2	0905144 B.C. Ltd	9.72	05/12/2020
255346916	63015	SAM 3	3	0905144 B.C. Ltd	15.78	05/12/2020
255206451	63016	SAM 4	4	0905144 B.C. Ltd	10.64	05/12/2020
255344282	63017	SAM 5	5	0905144 B.C. Ltd	12.55	05/12/2020
255384593	63018	SAM 6	6	0905144 B.C. Ltd	16.92	05/12/2020
255325051	63019	SAM 7	7	0905144 B.C. Ltd	14.27	05/12/2020
255325052	63020	SAM 8	8	0905144 B.C. Ltd	10.32	05/12/2020
255429399	60783	WAGONER 1	1	0905144 B.C. Ltd	18.46	05/12/2020
255345822	60784	WAGONER 2	2	0905144 B.C. Ltd	18.46	05/12/2020
255221053	60785	WAGONER 3	3	0905144 B.C. Ltd	13.58	05/12/2020
255427401	60786	WAGONER 4	4	0905144 B.C. Ltd	14.37	05/12/2020
255304421	60787	WAGONER 5	5	0905144 B.C. Ltd	16.00	05/12/2020
255456791	60788	WAGONER 6	6	0905144 B.C. Ltd	16.00	05/12/2020
255320890	60789	WAGONER 7	7	0905144 B.C. Ltd	13.88	05/12/2020
255320891	60790	WAGONER 8	8	0905144 B.C. Ltd	15.14	05/12/2020

Figure 4-2 Mineral Tenure

Table 4-2 Surface Leases

Land Disposition#	Pid	Application	Disposition	Tenure Purpose	Area (ha)	Disposition Date	Expiry Date
2753634	100015069		115G05-001	Industrial	69.7	24/08/1971	30/05/2034
2753541	100023288	2363L	115G11-003	Commercial	21.7	20/01/1971	31/10/2022

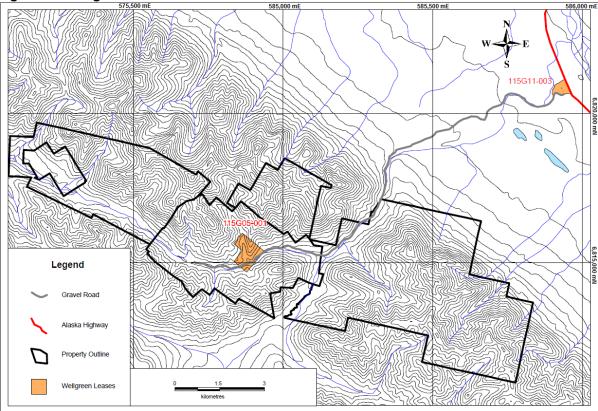


Figure 4-3 Wellgreen Surface Leases

4.3 **Property Ownership and History**

Wellgreen Platinum has owned a consolidated 100% interest in the Wellgreen Property since June 2011. Details of how Wellgreen Platinum acquired its 100% ownership of the Wellgreen Property are summarized below.

On September 22, 2010, Northern Platinum (who at that time owned a 100% interest in the Wellgreen Property, subject to a 50% back-in right held by Belleterre Quebec) was acquired by Prophecy Resource Corp. As a result, Prophecy Resource Corp. became the owner of a 100% interest in the Wellgreen Property (subject to the 50% back-in right held by Belleterre Quebec). Subsequently on September 24, 2010, Prophecy Resource Corp. acquired the 50% back-in right held by Belleterre Quebec, resulting in Prophecy Resource Corp. acquired the subject to the 100% interest in the Wellgreen Property, free of any back-in rights.

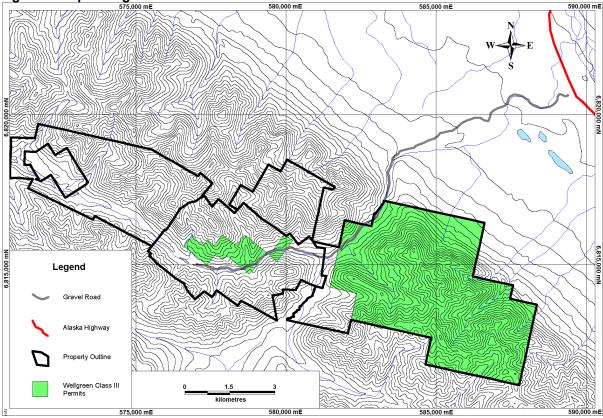
In June 2011, Prophecy Resource Corp. spun out all of its North American platinum and nickel assets, including its entire 100% interest in the Wellgreen Property, to 0905144 B.C. Ltd., a wholly-owned subsidiary of Pacific Coast Nickel Corp. (Wellgreen Platinum's predecessor company). As a result of the spin-out transaction, Pacific Coast Nickel Corp. acquired 100% ownership of the Wellgreen Property.

Immediately upon completion of this spin-out transaction, Pacific Coast Nickel Corp. changed its name to Prophecy Platinum Corp., and in December 2013, Prophecy Platinum Corp. changed its name to Wellgreen Platinum Ltd.

4.4 Permits

Wellgreen Platinum currently holds two Class 3 Operating Plan permits through the Yukon Government Mining Land Use Division (see Figure 4-4).

Permit LQ00323b covers the claims on which the current mineral resource has been delineated as well as the upper camp of the Wellgreen Property located on surface Lease 115G05-001. This permit expires July 20, 2021.


Permit LQ00259a covers the majority of the Burwash Property claims. This permit expires May 14, 2017.

In the Yukon, the Quartz Mining Land Use Regulation and the Placer Mining Land Use Regulation consist of a classification system based on varying levels of specific activities. These threshold levels categorize exploration activities into four classes of operation. Classes 1 through 4 represent activities with increasing potential to cause adverse environmental impacts.

Class 3 Programs require:

- Submission of a detailed Operating Plan to the Mining Lands Office
- Assessment through Yukon Environmental and Socio-economic Assessment Board
- That the Operating Plan be approved before any other exploration activities can proceed
- The Operating Plan may entail multi-year exploration programs to allow greater flexibility for the operator

Class 3 Program terms and conditions are presented in Table 4-3.

Figure 4-4 Operating Plan Permits

Table 4-3 Class 3 Operating Permit Terms

Element	Terms and Conditions
Establishing new access roads per program	
Off Road use of vehicles in summer	
Corridor width	1 m wide x 4000 m over the length of the project
Lines	Vegetative mat will not be disturbed
Establishment of trails per program	Spurs from main road to access drills sites
# of clearings per claim, including existing clearings	Up to 10 clearings per claim
Surface area of each clearing	Up to 25 square metres
Total volume of trenching	Up to 1800 cubic metres
# of person days per camp	Approximately 1200 person days
# of persons in a camp at any one time	12 persons
Fuel Storage in a stationary container	Diesel: 400L stored in 200L drums Gasoline: 200L stored in 20L jerry cans
Upgrading of access roads per	Existing 4x4 road will have to have winter sloughing bladed off annually
Used of vehicles on existing roads or trails	Annually from June to October

In addition, exploration at the Quill claims is currently taking place under a Class 1 "threshold", i.,e in the Yukon a written Class I permit is not issued.

4.5 Environmental Liabilities

Wellgreen Platinum has cleaned up surface debris at the old mill site and removed contaminated soils, pursuant to the Reclamation Plan referred to in Section 4.2 and in

accordance with the terms of the old surface lease. These activities were initiated in 2009 and were completed in 2013 under the direction of Access Consulting Group of Whitehorse. The majority of the contaminated soils on the existing Lease 115G11-003 have now been removed and disposed of in Tervita's Northern Rockies Landfill in Fort Nelson B.C. One small patch of hydrocarbon contamination remains underneath a site maintenance building. It was left during the initial clean up as it is being utilized. Once the structure is demolished, delineation and remediation will take place.

Some additional reclamation activities remain outstanding associated with the historic HudBay Mill Site and 1970s tailings impoundment which are not on Wellgreen controlled lands. The Government of Yukon and HudBay, with technical support from Wellgreen Platinum, are in discussions concerning the final reclamation and restoration of these historic sites. The outstanding amount with respect to these additional reclamation activities is estimated to be approximately Cdn.\$1.5 million.

4.6 First Nations

The Property is located in the "core area" of the Kluane First Nation as defined by the agreement with Canada and the Yukon governments. The Wellgreen property partially overlaps on Category B land (R-49 B) and Category A (R-01A) land owned by the Kluane First Nation (Figure 4-5) (Minister of Public Works and Government Services Canada 2003). As of the signing of the Kluane First Nation Final Agreement, on Category A land, the Kluane First Nation holds both the surface rights and the subsurface/mineral rights, while on Category B land, the Kluane First Nation owns the surface rights to this land, but not that which is below the surface. However, land belonging to persons holding a right, title, interest, license, and permit on the land prior to the time the area was claimed as Settlement Land are not subject to this legislation (Minister of Public Works and Government Services Canada 2003).

Surface Rights Legislation for Yukon First Nations is provided under the Umbrella Final Agreement between the Government of Canada, Government of Yukon, and Yukon First Nations. This legislation provides a mechanism to resolve disputes over access rights (Mining Yukon 2011 and Minister of Public Works and Government Services Canada 2003).

The Kluane First Nation has a settled land claim, which provides them with access, rights and obligations to land and resources, and the right to govern their own affairs. The Kluane First Nation signed final and self-government agreements with the Yukon and Canadian governments on October 18, 2003. The effective date of these agreements was February 2, 2004 (Yukon ECO 2011a).

The White River First Nation finalized negotiations toward final and self-government agreements with the Canadian and Yukon governments in 2002, when a Memorandum of Understanding was signed signifying the completion of the negotiation process. However, the White River First Nation decided not to ratify the negotiated agreements and there have been no negotiations since. As such, the White River First Nation does not have a settled land claim. Under the terms of the Umbrella Final Agreement, the White River First Nation was allocated Category A and Category B land in their "core area", which have been "interim protected" from third-party interests, pending the settlement or abandonment of a land claim agreement (Yukon ECO 2011b). The "core area" for White River First Nation lies well to the west and north of the Wellgreen property and is separated from the Kluane First Nation "core area" by an area of overlapping traditional use.

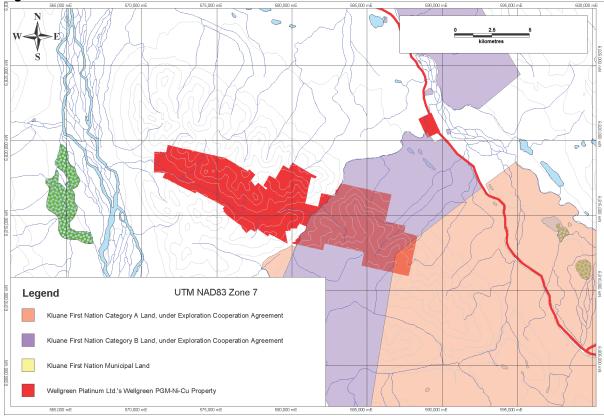


Figure 4-5 Kluane First Nation Land Status

5 ACCESSIBILITY, CLIMATE, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Accessibility

The Property is located approximately 317 kilometres northwest of Whitehorse and can be reached by two-wheel drive vehicle from Whitehorse via the paved all-weather Alaska Highway maintained by the Government of Yukon (approximately kilometre 1726). From the highway travel is by gravel road (mine access road) that runs southwest beside Quill Creek for a distance of 14 kilometres (Figure 5-1).

An all-weather airstrip is also located approximately 15 kilometres southeast of the Property at Burwash Landing. It is maintained by NAV CANADA and presently sees limited winter maintenance.

An all-season, deep-sea port is located in Haines, Alaska, 410 kilometres to the southeast, as well as Skagway, Alaska, which is currently utilized by Captstone Mining and Alexco Resources for the transport of mining concentrate material to bulk container ships to smelters. Both ports are year round ice free ports and are accessible by high-quality paved highways.

Work on the Wellgreen property can be conducted year-round as required.

Figure 5-1 Project Access

5.2 Climate

The regional climate is semi-arid, sub-arctic with relatively warm, dry summers and winters characterized by relatively dry, cold interior conditions, but tempered by west coast climate influences. Weather records have been historically recorded at the Burwash Landing weather station (806.8 masl). The area lies in the rain shadow of the Saint Elias Mountains, with average annual total precipitation for the Burwash Landing station of 27.97 centimetre

(cm) (11 inches) of which 19.2 cm (7.6 inches) typically falls as rain in summer and the remainder as snow in winter.

A meteorological station was installed near the Upper Camp approximately 600 metres southeast of the adit portal on October 27, 2012 by EBA, a Tetra Tech Company from Whitehorse. It consists of a standard 10-metre tower with instrumentation to measure wind speed and direction, air temperature, relative humidity, barometric pressure, incident solar radiation, and water-equivalent precipitation. An evaporation pan was installed in June 2013 at the same location to enable evaporation rates to be recorded over the summer months. Data is collected and stored on a regular basis by EBA.

Data collection recorded over the first year of installation returned the following:

- Maximum air temperature was 24.6°C on June 27, 2013
- Minimum air temperature was -37.4°C on January 28, 2013
- Greatest monthly precipitation was 25.2 cm in July 2013
- Least monthly precipitation was 0.38 cm in March 2013

5.3 Local Resources Infrastructure

The villages of Burwash Landing and Destruction Bay are located 15 and 30 kilometres, respectively, southeast from the Wellgreen Property. In addition to the airstrip at Burwash Landing, these towns have lodging, food and fuel with potential for future subdivision development to support housing for mining personnel.

5.3.1 Power

Generators installed for the exploration programs currently supply power on the Property. Haines Junction is the current limit of the high capacity grid and hydroelectric system of Yukon Energy Corporation (YEC) approximately 100 kilometres away along the Alaska Highway.

Currently 20 megawatts of surplus capacity exists on the YEC grid. Wellgreen Platinum has signed memorandums of understanding with liquefied natural gas suppliers in Alaska and Western Canada to supply the energy needs for the initial project.

5.3.2 Water

A water supply, adequate for drilling operations, can be pumped from local creeks. Potable and non-potable water was supplied for the camp from the surface waters of Nickel Creek. The surface waters of Arid Creek were tested by Maxxam Analytics and subjected to their "Drinking Water Analysis" package once a month during the 2013 field season. All tests confirmed that the water was potable; however the Yukon Public Health and Safety Act specifies:

"36.(1) The owner of a large public drinking water system that obtains water from a surface water source or uses well water under the direct influence of surface water, shall ensure provision of treatment consisting of filtration and disinfection, or other treatment capable of producing safe drinking water."

Wellgreen Platinum has installed a UV filtration system that the surface water must filter through prior to being dispensed for drinking as per the Yukon Public Health and Safety Act regulations. All local creeks freeze solid during the winter months, therefore in order to maintain a year round camp or mining operation, drilling of water wells will be required.

It is believed that sufficient water supplies from pit dewatering will be available for the mill processing needs of the project.

5.3.3 Mining Personnel

Yukon has no government debt, no territorial sales tax and a highly competitive taxation regime, all of which encourage investment in the mining sector. Skilled labour and equipment is available in the city of Whitehorse (population 24,500) and the community of Haines Junction (area population of approximately 800). Limited services are also available in the two closest communities of Burwash Landing and Destruction Bay.

5.4 Physiography

The Property is located in the Kluane Ranges, which are a continuous chain of foothills situated along the eastern flank of the Saint Elias Mountains. The topography across the Property is typical of the interior Yukon with slopes of 250 to 300 metres, and the highest peaks exceed an elevation of 1,800 metres.

The main mineralized zone on the Property lies between an elevation of 1,250 and 1,700 metres on a moderate to steep un-glaciated south-facing slope. Water drainage on the property is mainly east and then north into the Quill Creek drainage.

Vegetation consists of typical alpine vegetation on the hillsides, along with a mixture of pine, spruce and poplar trees located in the lower elevations and creek beds.

6 HISTORY

6.1 **Prior Ownership and Ownership Changes**

W. Green, C. Aird, & C Hankins were the prospectors who discovered the surface showing near Arid Creek in 1952. The property was optioned to Yukon Mining Company, a subsidiary of HudBay that same year, which was then transferred to another subsidiary called Hudson Yukon Mining in 1955.

The property was optioned to a joint venture between All North Resources Ltd. (All-North) and Chevron Minerals in 1986 (Kluane JV) which acquired a 50% interest in the Property. That same year, Galactic Resources Ltd. purchased the Hudson Yukon Mining interest and net smelter returns royalty on the property, and merged with All-North. In 1989, All North purchased Chevron Minerals' 25% interest to acquire 100% interest in the Property. Other joint ventures were formed on the Arch Property, which lies west of Wellgreen.

In 1994, Northern Platinum acquired an 80% interest in Wellgreen from All-North, with the remaining 20% purchased in 1999. Coronation Minerals optioned the property in 2005, but dropped the option in 2009. The property returned to Northern Platinum.

Prophecy Resource Corp. purchased Northern Platinum near the end of 2010. The property and other nickel assets were spun out to its subsidiary Pacific Coast Nickel Corp, which then changed its name to Prophecy Platinum Corp. in 2011. Prophecy Platinum Corp. changed its name to Wellgreen Platinum Ltd. in 2013.

6.2 **Previous Exploration and Development**

During the tenure of HudBay, a total of 25,017 metres of drilling was completed in 60 surface and 481 underground drill holes. Additionally, HudBay undertook 4,267 metres of underground development including internal shafts. Ground geophysics and a soil geochemical survey were also conducted.

Between 1987 and 1988 during the Kluane JV, 16,648 metres of drilling was completed in 83 surface and 34 underground holes with some rehabilitation of the underground workings and slashing of new drill stations. Additional exploration included geological mapping and sampling, VLF and magnetic surveys, and surface trenching.

From 1996 to 2005, Northern Platinum drilled 4,471 metres of surface diamond (10 holes) and reverse circulation (57) holes.

Coronation drilled 7,248 metres in 24 surface and 3 underground holes from 2006 to 2008. This program resulted in the discovery of the deep mineralization in the East Zone. An aeromagnetic survey of 854 line kilometres was also carried out.

In 2009 and 2010, Northern Platinum drilled 4,190 metres in 16 core holes prior to its acquisition by Prophecy Resources Corp. Prophecy Resources Corp. drilled one more 117 metre hole.

In 2011, Prophecy Platinum Corp. (now Wellgreen Platinum Ltd.) drilled 1,925 metres in 6 core holes. This drill program resulted in an updated Resource and PEA.

In 2012, Prophecy Platinum Corp. (now Wellgreen Platinum Ltd.) drilled 10,983 metres in 51 core holes.

In 2013, Prophecy Platinum Corp. (now Wellgreen Platinum Ltd.) drilled 29 drill holes which totalled 4,735 metres of new drilling, along with assaying another 8,462 metres of core from approximately 21,784 metres of relogged historical drill core from 108 holes.

Additional information regarding a brief description of the exploration programs, to the extent known, is discussed in Section 10.

6.3 Historic Mineral Resource and Reserve Estimates

A qualified person (as defined under NI 43-101) has not completed sufficient work to classify the historical estimates below as a current mineral resources or mineral reserves, therefore, Wellgreen Platinum is not treating the historical estimates as mineral resources or mineral reserves. These have been superseded by the current mineral resource estimates disclosed in Section 14.

In 1956, Hudson Yukon Mining estimated reserves of 0.5 million tons at 1.34% Cu, and 2.14% Ni. In 1969, a feasibility study estimated 669,150 short tons of "Proven Reserves" at 2.04% Cu, 1.42% Ni, 0.073% Co, 1.30 g/t Pt, 0.93 grams per ton (g/t) Pd, and 0.17 g/t Au.

In 1989, Watts, Griffis and McOuat (WGM) estimated a Probable reserve of 46.7 million tons grading 0.34% Cu, 0.36% Ni, 0.015 ounces per ton (oz/t) Pt, and 0.010 oz/t Pd, and Possible reserve of 8.5 million tons averaging 0.36% Cu, 0.35% Ni, 0.012 oz/t Pt, and 0.009 oz/t Pd.

In 2008, WGM completed a resource estimate for Coronation Minerals (Kociumbas,& El-Rassi, 2008). Using a cut-off grade of 0.2% NiEq, WGM estimated an indicated resource of 6.4 million tonnes grading 0.43% Ni, 0.45% Cu, 0.309 g/t Pt, and 0.377 g/t Pd. An additional 23.9 million tonnes grading 0.29% NI, 0.28% Cu 0.274 g/t Pt, and 0.277 g/t Pd was classified as inferred.

6.4 Historic Production

Hudson Yukon Mining commenced commercial production in 1972. Ore was trucked down from the mine to the millsite near the current lower camp, beside the Alaska Highway. Production ceased in 1973 due to falling metal prices, and discontinuous massive sulphide horizons. A total of 171,652 tonnes grading 2.23% Ni, 1.39% Cu, 1,300 parts per billion (ppb) Pt, 920 ppb Pd, 171 ppb Au, 400 ppb Rh, 420 ppb Ru, 250 ppb Ir, 200 ppb Os, and 200 ppb Re were milled to produce 33,853 tons of concentrate, which was shipped to Sumitomo in Japan.

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional Geology

The Property is located within the Insular Superterrane, which is dominantly composed of two older terranes (Wrangellia and Alexander) that were amalgamated at approximately 320 million years (Ma) (Figure 7-1). These terranes are composed of island arc and ocean floor volcanic rocks with thick assemblages of overlying oceanic sedimentary rocks that range in age from 220 to 400 Ma. Wrangellia exhibits a package of platform-type limestones that are several kilometres thick conformably overlying a 230 Ma old package of volcanic rocks (the Nikolai Group) that is present on the Property.

The Project is contained within the Kluane Ultramafic Belt, which is situated within the Wrangellia Terrane. This terrane is complex and variable, extends from Vancouver Island to central Alaska, and is most commonly characterized by the widespread exposure of Triassic flood basalts and complementary intrusive rocks (Figure 7-2). The ultramafic intrusives of the Wrangellia Terrane represent one of the largest tracts of nickel-copper-PGE mineralization in North America, second in size to the Proterozoic Circum-Superior Belt which rims the Archean Superior provincer (Hulbert 1997).

The exposed base of Wrangellia is comprised of Pennsylvanian to Permian arc volcanic rocks and Permian sedimentary rocks of the Skolai Group and includes the Hasen Creek Formation and the Station Creek Formation. The Skolai Group is unconformably overlain by the Middle and Late Triassic Nikolai Group generally consisting of basalt flows with minor intercalated limestone. Mafic and ultramafic intrusions are common throughout the area and are generally located near the contact between the Station Creek and Hasen Creek formations. The intrusions commonly exhibit magmatic sulphide associated nickel-copper-PGE and gold mineralization. These sills, which represent individual members of the Kluane Ultramafic Belt, are thought by some to be part of a sub-volcanic system that fed the Nikolai Formation flood basalts (Israel 2004). However, there is some field evidence which suggests that the Nikolai Formation basalts may have been fed instead by the 232.2 \pm 1 Ma Maple Creek Gabbro (Mortensen & Hulbert, 1992). This gabbro occurs as a series of dikes and plugs that are observed to cross-cut the sills of the Kluane Ultramafic Belt and in one case are exposed as feeders to the Nikolai Group basalt (Hulbert, 1997). The Kluane Belt is bound on the northeast by the Shakwak Fault, which is a major terrain boundary. The fault's latest movement is described as dextral (right-lateral).

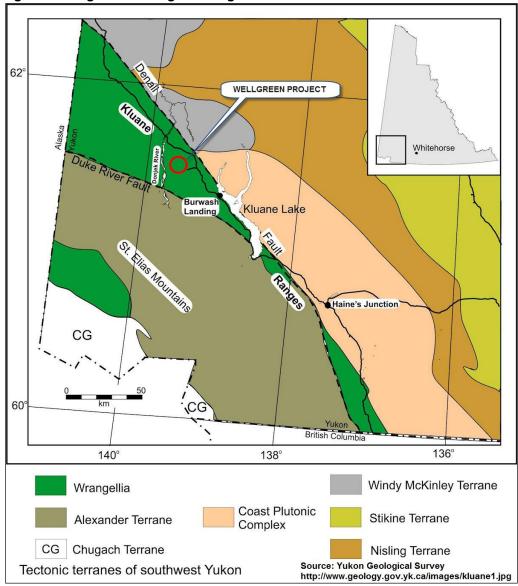


Figure 7-1 Regional Geologic Setting

7.2 Local Geology

Israel and Zeyl (2004) provides the most recent regional geological mapping for the Property as illustrated in Figure 7-2. Hulbert (1997) also provides a description and discussion of detailed geology and interpretation covering the Wellgreen deposit area from maps completed by Archer, Cathro and Associates, who have compiled and reinterpreted exploration results for the Kluane JV programs carried out on behalf of All-North. The descriptions and classifications of the geological framework for the Property from these sources are not consistent.

The oldest rocks on the Property are represented by the Pennsylvanian and/or Permian Station Creek Formation. The Station Creek Formation underlies significant portions of the Property. The formation consists of light to medium green volcanic breccia, tuffs and tuffaceous sandstones and also contains a component of basalt. The Station Creek Formation is conformably overlain by the Permian Hasen Creek Formation, which consists

of a range of metasediments; greywacke, thin-bedded siltstone turbidites, chert/quartzite, argillite, and limestones as well as volcaniclastics and tuffs. These rocks are folded into a series of parallel, sometimes overturned, synclines and anticlines.

The Hasen Creek Formation rocks are unconformably overlain by locally amygdaloidal flood basalt, volcanic breccias and metasediments of the Upper Triassic Nikolai Group. The Nikolai Group rocks are also folded into a series of southeast-northwest trending anticlines and synclines.

In the Wellgreen deposit area, Nikolai Group mafic volcanics occur in the area immediately south of the Quill Creek Complex. The volcanics have been interpreted to be in fault contact with the upper part of the Quill Creek Complex and Station Creek Formation rocks (Israel and Zeyl 2004).

There is an abundant series of relatively small intrusions into Paleozoic metasediments and the Quill Creek Complex. They are mapped as andesitic to gabbroic dikes and plugs that are part of the Maple Creek Gabbro, and are likely correlated with the Nikolai Formation. Hulbert (1997) describes these same rocks as felsic dikes, which may have been gabbro dikes that experienced post-emplacement alteration. Many of these small intrusions are associated with the northeast-southwest oriented faults that cut the stratigraphic sequence and the Quill Creek Complex, while others are parallel to the structural grain of the Station Creek and Hasen Creek Formations.

The youngest rocks on the Property are represented by the Cretaceous intermediate and mafic intrusive belonging to the Kluane Ranges suite.

Longitudinal faults and/or shears are common in the ultramafic rocks. Some of these faults occur along lithological contacts. The most prominent of these is coincident with Maple Creek. Hulbert (1997) describes two western faults as west-dipping reverse faults. Two faults present in the western portion of the Wellgreen intrusion offset the mafic-ultramafic rocks and dip steeply to the southeast.

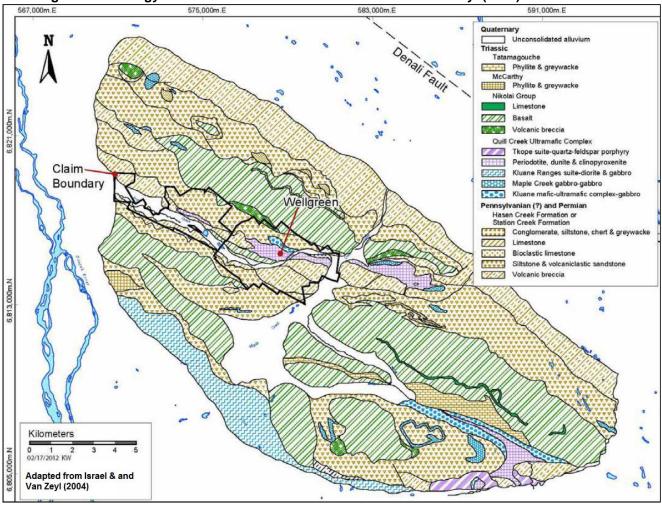
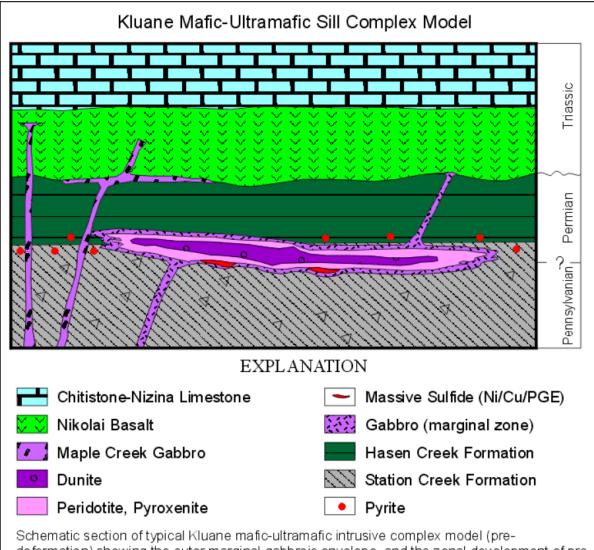
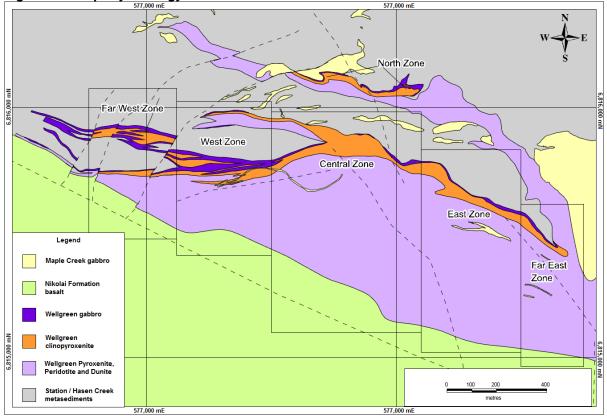



Figure 7-2 Geology of the Quill Creek Area from Israel & and Van Zeyl (2004)



Schematic section of typical Kluane mafic-ultramafic intrusive complex model (predeformation) showing the outer marginal gabbroic envelope, and the zonal development of progressively more ultramafic rocks (i.e. Pyroxenite, peridotite and dunite, respectively) towards the core of the intrusion. Note the massive sulphide concentrations at the base of the complex and the intrusions preferential emplacement at or near the pyritic Station Creek-Hasen Creek Formations contact zone. (L. Hulbert 1995, GSC OF3057)

7.3 Property Geology

The Wellgreen deposit occurs within, and along the lower margin of, an Upper Triassic ultramafic-mafic body, within the Quill Creek Complex. This assemblage of mafic-ultramafic rocks is 20 kilometres long and closely intrudes along the contact between the Station Creek and Hasen Creek formations. The main mass of the Quill Creek Complex, the Wellgreen and Quill intrusions, is 4.7 kilometres long and up to 1 kilometre wide. A smaller mass of similar intrusives is located along strike to the northwest and southeast, known as the Arch and Burwash intrusions, respectively. The Quill Creek Complex consists of a main intrusion and an associated group of upright to locally overturned, steeply south dipping sills. These associated sills may be remnants of the main intrusion separated from the main mass by folding and shearing, however based on drill information the northernmost sill, called the North Arm, and the main Wellgreen sill appear to be contiguous at depth. The Quill Creek

Complex layered intrusion which gradationally transitions from Dunite to Peridotite to Pyroxenite to Clinopyroxenite to Gabbro with a corresponding increasing sulphide and mineralization content through this sequence toward contact with the Paleozoic sedimentary country rocks. The intrusions are variably serpentinized and deformed. Locally, the sills have a lower gabbroic margin adjacent to a chilled contact with Paleozoic rocks. Recent observations indicate that many of these marginal gabbros may actually be endo-skarn units that appear to be the direct result of digestion and hybridization of limestone present in the Hasen Creek country rocks by the Wellgreen parent magma(s). Mafic-rich exo-skarns also occur in the floor rocks adjacent to the marginal facies gabbro, particularly where the metasediment host includes limestone or calcareous rocks. The intrusives are zoned upwards/southward away from the lower gabbroic zone through zones of Clinopyroxenite, Pyroxenite, Peridotite, and Dunite. This zonation may be directly related to the degree of interaction with the reactive wall-rocks and appears to reflect the relative sulphide content of the rocks with highest sulphide content at the lower margins grading up to the least sulphide content in the upper parts of the tabular intrusion mostly as Dunite.

7.4 Mineralization

Mineralization on the Property occurs within the Quill Creek Complex. This variably serpentinized, ultramafic-gabbroic body intrudes Pennsylvanian-Permian sedimentary and volcanic rocks. Historic exploration and development programs defined two main zones of gabbro-hosted massive and disseminated sulphide mineralization known as the East Zone and West Zone. These zones have since been subdivided into the contiguous Far East, East, West, and Far West Zones with the connecting Central Zone. The historic North Arm Zone has only limited drilling to date.

7.4.1 Far East Zone

The Far East Zone represents the easternmost part of the Wellgreen intrusion. The Zone lies between 578250E and Arid Creek, at approximately 578750E (coordinate system North American Datum 1983, Zone 7). The large plug of Maple Creek Gabbro represents the eastern boundary of the zone (Figure 7-3). In both the current East and Far East Zones, historic exploration efforts focused on defining massive sulphide horizons and lenses at the contact between the Wellgreen Intrusion and Hasen Creek metasediments and as such this contact is very well defined. This sedimentary contact was historically interpreted to be steeply dipping to the south based on the data available at the time, but it wasn't until later work that the contact's orientation was observed to be different with a fence of underground holes that were drilled in the East Zone (see below) that determined that the contact was a wedge of metasediments in a much larger ultramafic body, this change in orientation was corroborated in the Far East Zone by drill holes 154, 160, and 165. Further drilling determined that the main Wellgreen Intrusion is likely contiguous with the southern contact of the North Arm.

The typical steeply-dipping lithological sequence of Dunite-Peridotite-Pyroxenite-Clinopyroxenite-Gabbro with massive sulphide is very well defined in the Far East Zone. The core of the Far East Zone shows a broad sub-horizontal sulphide-rich pyroxenite, clinopyroxenite, and gabbro/skarn horizon with a second clinopyroxenite and gabbro enriched zone at the lower contact with the metasediments.

In the easternmost portion of the Far East Zone, all lithologies exhibit a similar subhorizontal dip to the symmetrical sequence further west: with Dunite transitioning to Peridotite then Pyroxenite, Clinopyroxenite, and Gabbro with skarn units and massive sulphide immediately prior to the basal contact with Station and Hasen Creek metasediments. This lower sequence is interpreted to be contiguous with the basal sequence observed 350 metres farther to the west. The basal contact is interpreted to be contiguous with the northern contact of the North Arm. Additionally, the foot-wedge pinches out to the east such that, in the upper portion of the intrusion, the various contact-proximal lithologies are absent.

7.4.2 East Zone

The East Zone lies between 577900E and 578250E, and was historically explored for massive sulphide at the Wellgreen-footwedge contact. As mentioned above, this Zone was the first in which the change in the footwall contact's orientation was observed in drill core, although it was never followed up by subsequent operators in this Zone. The Peridotite-Pyroxenite-Clinopyroxenite-Gabbro sequence is observed to wrap around the base of the wedge in the East Zone. Historic drill holes ended in mineralized material such that it is currently unknown how thick the mafic-ultramafic package is beneath the foot-wedge which remains open at depth.

The historic East Zone (current East and Far East Zones combined) was mined by Hudson Yukon Mining in 1972 and 1973, and approximately 171,652 tonnes of ore was extracted.

7.4.3 Central Zone

The Central Zone lies between 577500E and 577900E. The eastern portion of the Zone is similar to the East Zone whereby well mineralized Peridotite gradationally transitions to

Pyroxenite to Clinopyroxenite and Gabbro units are observed near the contact with dominantly Station Creek metasediments. The western portion of the Central Zone exhibits a sub-horizontal, symmetrical, mineralized unit similar to that intersected at depth in the Far East Zone. Additional drilling will be required to test whether the higher grade sub-horizontal mineralization intersected in the Central zone connects with that in the East and Far East zones. This represents high priority exploration target.

7.4.4 West Zone

The West Zone lies between 577120E and 577500E. Similar to the western portion of the Central Zone, well mineralized Pyroxenite overlies a comparatively thick package of Clinopyroxenite and Gabbro with significant semi-massive and massive sulphide zones. The small wedge of sedimentary rocks that separates the Middle Arm from the main Wellgreen Intrusion is still present, and was intersected by two drill holes in 2001. The West Zone remains open at depth and additional drilling will be required to test whether the higher grade mineralization connects with the subhorizontal higher grade zone in the core of the Central Zone.

7.4.5 Far West Zone

The Far West Zone lies between 576720E and 577120E, and the northern part of the Zone is interpreted to be a branching sill from the main Wellgreen Intrusion. This sill is generally zoned outwards, with well mineralized Pyroxenite in the centre grading to Clinopyroxenite and Gabbro towards the contact with the metasedimentary country rocks. Grades in the Far West Zone are significantly elevated starting at surface with high sulphide content. This Zone has not been tested at depth to test its connectivity with the West and Central Zones.

7.4.6 North Arm Zone

The North Arm Zone is located in the east-central portion of a narrow 1,200 metre long sill, positioned approximately 150 metres stratigraphically below the main Wellgreen Intrusion. It was discovered by Hudson Yukon Mining in the 1950s and explored in 1987 with three drill holes by All-North. All of these drill holes intersected mineralization, and the best reported intersection was 0.51% copper, 2.01% nickel, 0.96 g/t platinum and 0.65 g/t palladium over a core length of 3.4 metres. The geology of this zone is similar to both the East and West Zones. Mineralization consists of massive sulphide lenses, disseminated sulphide in Gabbro and Clinopyroxenite, and as fracture fillings in footwall Hasen Creek metasediments. The North Arm Zone was tested in 1988 and 2005 by limited drilling and was determined to have a subvertical dip. The information collected to date suggests that the North Arm Zone is relatively narrow in comparison with the main Wellgreen body at surface, but it does represent a prospective area of nickel-copper mineralization that warrants further work and may be contiguous with the main Wellgreen Intrusion at depth.

7.4.7 BSB Zone

The BSB Zone material, a clay-rich very high-grade style of mineralization, was discovered in 2004 by prospector David Javorsky. Numerous showings of this material are documented in the North Arm Zone by Shau (2006) with assays of up to 80 parts per million (ppm) Pt and 158 ppm Pd are reported from these showings, and these were targeted in the 2005 drill program.

The current understanding of the BSB material is that it represents highly weathered massive sulphide horizon whereby PGEs were concentrated by supergene enrichment processes. The showings occur above the ice limit of the last glacial maximum (above 1600 metres above sea level (ASL)) and were thus exposed for millennia and never eroded by ice. This long-lived exposure allowed for the in-situ development of a highly oxidized and weathered zone, where PGEs, originally present either in solid-solution or as discrete phases in massive sulphide, were dissolved and re-precipitated.

Clays and panned concentrates were studied using X-ray diffraction (XRD) and electron microprobe. The mineralogy of the un-panned samples is consistent with strongly weathered and oxidized massive sulphide (limonite, goethite etc.) while one panned concentrate contained sperrylite and native gold and another contained a palladium-sulphur-selenium-antimony mineral and electrum.

Though high grade, these zones are not believed to contain large tonnages of oxide material at this time.

7.4.8 Minerals

Table 7-1 to Table 7-3 after Cabri et al. (1993) list the opaque minerals and PGM and PGEbearing minerals found in the deposit. The elevated presence of rhodium, iridium, osmium, rhenium, and ruthenium within the mineral suite provide an opportunity for additional potential economic contributions from these metals.] Rhodium is present at Wellgreen in highly anomalous concentrations as compared to the concentrations found in Noril'sk ores in Russia and other significant ultramafic systems globally (Hulbert 1997).

Major Minerals*							
Pyrrhotite	Fe _{1-X} S						
Pentlandite	(Fe, Ni) ₉ S ₈						
Chalcopyrite	CuFeS ₂						
Magnetite	Fe ₃ O ₄						
Ilmenite	FeTiO ₃						

Table 7-1 Opaque Minerals Observed in the Wellgreen Deposit

Less Common to Rar	e Minerals *				
Violarite	FeNi ₂ S ₄				
Sphalerite	(Zn,Fe)S				
Chromite	FeCr ₂ O ₄				
Cobaltite**	CoAsS/NiAsS				
Aresenopyrite	FeAsS				
Ulimannite	NiSbS				
Siegenite argentopentlandite	(Ni, Ag)(Fe, Ni) ₈ S ₈				
Gold/electrum	(Au/Ag)				
Melonite	NiTe ₂				
Bismuth tellurides	Bi-Te (?)				
Galena	PbS				
Altaite	PbTe				
Kickline	NiAs				
Covellite	CuS				
Breuithauptite	NiSb				

Less Common to Rare Minerals *							
Barite	BaSO ₄						
Titanite hessite	CaTiSiO ₂ Ag ₂ Te						
Matildite	AgBiS ₂						
Undefined	Cu-Fe-Ba-S**						

Notes: *Ideal Formula. **Unidentified mineral of the cobalt-gersdorffite series.

Mineral	Formula
Sperrylite	PtAs ₂
Sudburyite	PdSb
Testibiopalladite	PdSbTe
Merenskyite	PdTe ₂
Moncheite	PtTe ₂
Michernerite	PdBiTe
Stibiojaiadinite	Pd_5Sb_2
Mertielte II	Pd ₈ Sb ₃
Geversite	PtSb ₂
Hollingworthite	RhAsS
Froodite	PdBi ₂
Unidentified	(Pd,Ni) ₂ (Te,Sb) ₃
Unidentified	(Pd,Ni) ₃ (Te,Sb) ₄
Unidentified	Pd(Bi,Te)
Unidentified	Pd₃Ni(Sb,Te,Bi)₅
Laurite	RuS ₂
Kotuiskite	PdTe ₂
Pt-Fe alloy(s)	Pt ₃ Fe or PtFe(?)
Unidentified	Re>lr>Os>Ru alloy
Unidentified	Pd-Hg
Iridium	lr
Unidentified	Re sulphide (?)

Table 7-2 Primary PGE-Bearing Minerals

Table 7-3 Additional PGE-Bearing Minerals

Mineral	Formula	Metal Content
Melonite	(Ni,Pd,Pt)Te ₂	Up to 15.1%Pd; up to 9.37% Pt
Unidentified	(Ni,Pd) ₂ (Te,Sb) ₃	Up to 22.8% Pd
Unidentified	(Ni,Pd) ₃ (Te,Sb) ₄	Up to 15.9% Pd
Breuithauptite	(Ni,Pd)Sb	Up to 18.9% Pd
Hextestibio-panickelite	(Ni,Pd)₂SbTe	Up to 15.9% Pd
Ullmannite	(Ni,Pd)SbS	Up to 0.09% Pd
Cobaltite	(Co,Rh)AsS	Up to 2.7% Rh, in zones
Pentaldite	(Pt,Rh,Ru)*	Up to 34 Pd, 12 Rh, 13 Ru (ppm)
Chalcopyrite	(Ru,Rh,Pd)*	Up to 10 Ru, 10 Rh, 9 Pd (ppm)
Pyrrhotite	(Pd)*	Up to 5.6 Pd (ppm)

*Trace levels as determined by proton microprobe. Note:

8 DEPOSIT TYPE

The Wellgreen deposit is hosted in the Quill Creek Complex, one of a number of maficultramafic sills that are enriched in nickel-copper-PGE mineralization that outcrop within the Kluane Ultramafic Belt of the Wrangellia Terrane in southwestern Yukon. The sills which form the Kluane mafic-ultramafic complex are thought to be part of a sub-volcanic system that fed the Nikolai Formation flood basalts and have been compared to the Noril'sk in Russia.

Similar deposits also occur elsewhere in Canada (Franklin sills; Bedard et al., 2011; Cape Smith Belt; Giovenazzo et al., 1989), in China (Yangluiping Instrusions; Xie-Yan Song et al. 2003, Jinchuan; Tonnelier, 2010), and southern Africa (Uitkomst intrusion; Maier et al., 2013, floor of eastern Bushveld Complex; Maier et al., 2001).

Many sill-hosted Ni-Cu-PGE deposits are generally considered to be part of a large, interconnected magmatic system that fed voluminous flood basalts and resulted from the impingement of a mantle plume upon the base of the crust. At Noril'sk, the main sulphide bodies formed from segregated sulphide at the base of magmatic conduits through which multiple pulses of magma travelled, and this mechanism is believed to have been also applied to the Wellgreen deposit. However, there is one important difference between Wellgreen and the above deposits: the Quill Creek complex intruded a Pennsylvanian-Permian island arc, whereas many of the other deposits are Precambrian and all intruded into cratons. Greene et al. (2010) offer compelling evidence that the mafic-ultramafic intrusions and flood basalts of Wrangellia were formed in an oceanic plateau, which itself was formed by a mantle plume (Richards, 1991), and the terrane was subsequently accreted to the margin of North America in the Jurassic. These circumstances make Wellgreen unique among other sill-hosted Ni-Cu-PGE deposits.

9 EXPLORATION

Historic exploration carried out by previous operators is summarized in Section 6. Exploration relevant to the mineral resource update is presented below.

9.1 Exploration Potential

The property extends over an 18 kilometre mineralized trend with multiple exploration targets.

9.2 Grids and Surveys

In 2013, the Company conducted a collar monument and surveying program. This effort was undertaken to modernize the Wellgreen drill database by changing the coordinate system for all data from local mine grid to Universal Transverse Mercator, North American Datum 1983, zone 7 in order to prepare for this Technical Report. Many holes on Wellgreen were never surveyed or designated with monuments, and those that were surveyed used the mine grid coordinate system. A differential global position system (DGPS) was used to survey 58 holes. Most collar positions were changed by a few metres, however some collars were more than 30 metres away from their supposed locations.

For road and trail surveys, the Trimble unit was carried on the operator's back whilst they were driving an all-terrain vehicle (ATV). The instrument took a measurement every few seconds. For drill collar surveys, the Trimble was activated directly over the collar and its position was measured every few seconds for one minute. The average of the measurements was then corrected using the base station located in Juneau, Alaska.

9.3 Geological Mapping

In 2013, a three day mapping program was undertaken on the eastern portion of the Property, east of Arid Creek and northeast of the upper camp. Parts of this area were exposed by undocumented bulldozer trenching. This mapping effort led to a better understanding of the contacts between the Wellgreen intrusion, the Maple Creek Gabbro, and the Hasen Creek sediments.

9.4 Geochemical Sampling

In 2012, a soil sampling survey was undertaken over the Wellgreen/Quill, Burwash and Arch properties (Gronsdahl & Jackson, 2012). The survey over Wellgreen/Quill consisted of 450 samples, with an additional 515 no-sample locations due to permafrost. Results for Cu are presented in Figure 9-1.

Soil samples were taken on a 25 metre x 25 metre nominal spacing across the Property, and soil augers and mattocks were used to try to get to the B or C horizons. The samples were placed in Kraft sample bags and shipped to the ALS Global preparation facility in Whitehorse, YT. Sample pulps were then sent to ALS Global's lab in Vancouver, BC for assay.

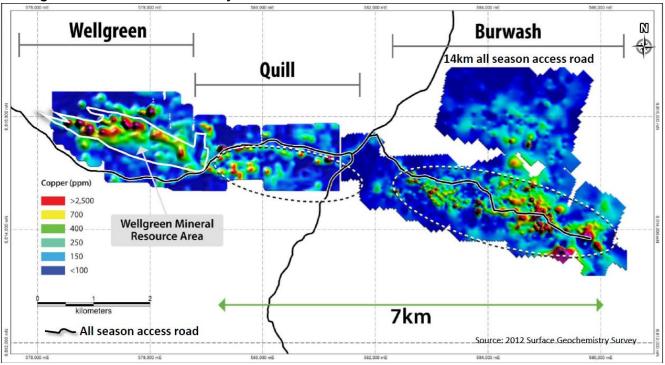


Figure 9-1 Cu Soil Geochemistry - 2012

9.5 Geophysics

In 2012, a Mag-VLF survey was conducted over the Wellgreen/Quill, Burwash, and parts of the Arch property (Froc & Bateman, 2013). The survey over Wellgreen/Quill consisted of 57 lines for a total of 62.74 line kilometres (Figure 9-2).

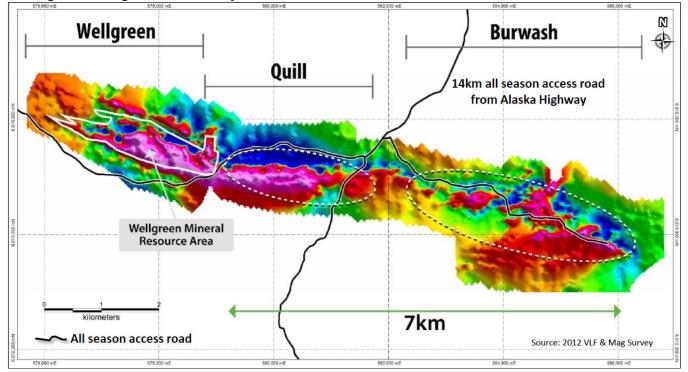


Figure 9-2 Magnetic-VLF Survey Extent

10 DRILLING

10.1 Historic Drilling

Considerable surface and underground drilling was completed in the 1950s by Hudson Yukon Mining, an operating subsidiary of HudBay. Additional drilling was completed under the auspices of the Kluane JV (All-North, Chevron and Galactic Resources) in the 1980s by Archer, Cathro & Associates Ltd. Drill logs, assay summaries and assay certificates for many of these historic drillholes are available and have been compiled into a database along with more recent drill data. This historic work has not been completely documented, however much of the data has been located and digitized.

10.1.1 Northern Platinum Drilling

Northern Platinum conducted numerous drill campaigns on Wellgreen between 1996 and 2010, three of which were previously undocumented. The drilling conducted by Northern Platinum in 2009 and 2010 was designed to extend and expand the potential resource of the Wellgreen deposit by targeting mineralization up dip of the East Zone and east along strike. Drilling was completed by E. Caron Diamond Drilling Ltd. of Whitehorse. All holes drilled in 2009 and 2010 were HQ diameter and all drilling was run in five foot intervals (1.52 metres). Ten holes were drilled in the East Zone in 2009, totalling 2051.75 metres. Prior to its acquisition by Prophecy Resources Corp., in 2010 Northern Platinum drilled 6 holes in the East Zone. After acquisition, one more hole was drilled, bringing the 2010 total to 2138.03 metres.

10.1.2 1996 Drill Program

In 1996 Northern Platinum conducted a previously undocumented reverse circulation (RC) program that focused on the historic East and West Zones. Drilling was completed by Northern Platinum staff on an Ingersoll Rand ECM-350 3.5" diameter RC drill. A total of fifty-seven holes totaling 3,873.7 metres were drilled and drilling was run on five foot intervals (1.52 metres).

10.1.3 2001 Drill Program

Another previously undocumented drill program was conducted in 2001. This program targeted mineralization along the historic footwall contact and is the only program to have drill-tested the Middle Arm, a splay off of the main Wellgreen Intrusion in the West Zone. Drilling was conducted by E. Caron Diamond Drilling Ltd. of Whitehorse. A total of six drill holes were completed on the Wellgreen property and one hole on the adjacent Arch property, for a total of 591.92 metres. All drilling was run at HQ diameter at five foot intervals (1.52 metres).

10.1.4 2005 Drill Program

A small, undocumented program was conducted in 2005. This program focused on the North Arm, specifically the BSB zone: a showing with very high PGE concentrations. Drilling was completed by Northern Platinum staff on an Ingersoll Rand electrochemical machining (ECM)-350 3.5" diameter RC drill. A total of four holes were completed totaling 67.05 metres. All drilling was run at five foot intervals (1.52 metres).

10.1.5 2006-2008 Coronation Minerals Drilling

The holes drilled on the Wellgreen Property by Coronation Minerals in 2006 were for the purpose of validating the historical drilling done by the Kluane JV in 1987 and 1988. The program was designed by WGM with a total of 24 holes proposed. Coronation Minerals engaged E. Caron Diamond Drilling Ltd. of Whitehorse, Yukon as the drill contractor. All of the surface drilling was HQ, and holes were reduced to NQ as the depth increased and ground conditions became unfavourable. The underground drilling was all BTW core size. The drilling began in late July 2006 and a total of eleven holes were completed for 2,016.87 metres. Ten of the holes drilled in 2006 were drilled in order to "twin" historical holes drilled by the Kluane JV.

In 2007, three underground holes were completed totalling 576.99 metres. Two of the holes were designed to "twin" historical holes.

In 2008, thirteen additional surface diamond drillholes were drilled by Coronation Minerals.

10.2 Wellgreen Platinum Drilling

10.2.1 2011 Drill Program

The drilling conducted by Wellgreen Platinum in 2011 was designed initially to delineate the potential resource of the Wellgreen deposit by targeting the area between the East and West Zones to prove that the zones are not separate, but rather one continuous zone. The focus of the program evolved to test the hanging wall disseminated sulphides located in the ultramafic unit.

Drilling was completed by E. Caron Diamond Drilling Ltd. of Whitehorse. A total of nine drillholes were completed during the 2011 drill program from June to October, however three collar locations were never recorded and are considered lost. All holes were drilled HQ and all drilling was run in five foot intervals (1.52 metres). Including the lost holes, a total of 2269.17 metres was drilled in 2011.

Drill hole collar information is shown in Table 10-1 and illustrated in Figure 10-1. Significant intercepts based on a 0.15% nickel equivalent (NiEq) cut-off grade are presented in Table 10-2.

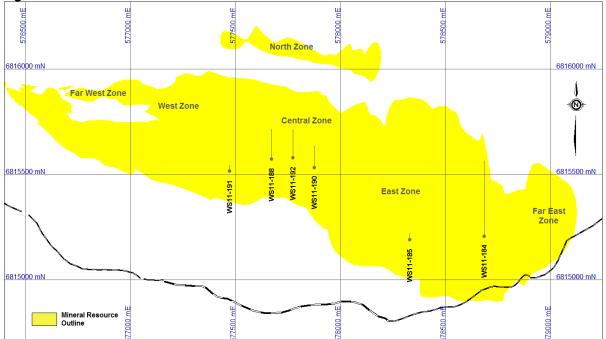

Hole-ID	UTM East	UTM North	Elev (masl)	Length (m)	Azimuth (°)	Dip (°)
WS11-184	578685.05	6815205.87	1258.99	507.49	0.00	-45.00
WS11-185	578330.32	6815188.05	1377.77	59.13	0.00	-55.00
WS11-188	577672.32	6815572.03	1635.18	491.03	0.00	-70.00
WS11-190	577875.57	6815531.60	1549.15	373.08	0.00	-70.00
WS11-191	577472.52	6815514.96	1556.38	89.92	0.00	-70.00
WS11-192	577774.13	6815578.23	1600.58	404.47	0.00	-70.00

Table 10-1 Wellgreen Platinum 2011 Drill Collars

	<u> </u>				0						
Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WS11-184	8.23	111.07	102.84	0.212	0.018	0.013	0.070	0.104	0.010	0.273	1.043
WS11-184	137.16	480.67	343.51	0.330	0.168	0.016	0.248	0.288	0.037	0.526	2.008
WS11-185	8.99	59.13	50.14	0.207	0.022	0.014	0.059	0.097	0.006	0.266	1.014
WS11-188	6.40	471.40	465.00	0.285	0.186	0.016	0.335	0.321	0.050	0.517	1.972
WS11-190	4.27	294.07	289.80	0.259	0.065	0.015	0.129	0.200	0.020	0.370	1.411
WS11-190	309.59	364.57	54.98	0.230	0.260	0.013	0.352	0.302	0.069	0.490	1.872
WS11-191	7.07	85.04	77.97	0.214	0.021	0.012	0.085	0.142	0.017	0.285	1.089
WS11-192	9.45	394.35	384.90	0.299	0.146	0.016	0.281	0.303	0.038	0.498	1.901
Minimum width	10 matroa	Maximum	internal dilu	tion 6 mot							

Table 10-2 Significant Intercepts 2011 Drilling

Minimum width 10 metres; Maximum internal dilution 6 metres

Figure 10-1 2011 Drill Plan

10.2.2 2012 Drill Program

The surface drilling conducted by Wellgreen Platinum in 2012 was designed to infill the potential resource of the Wellgreen deposit in the East and West Zones. The underground program focused on upgrading the resource category of the high-grade hanging-wall gabbro in the East Zone.

Surface drilling was completed by Foraco International SA of Toronto, ON; while underground drilling was completed by DMAC Drilling of Aldergrove, BC. A total of twenty-two drillholes from surface and an additional twenty-nine drillholes from underground were completed during the 2012 drill program from February to November, totalling 10,983.11 metres. All holes were drilled HQ, locally down-sizing to NQ in poor ground conditions, and all drilling was run in five foot intervals (1.52 metres).

Drill hole collar information is shown in Table 10-3 and illustrated in Figure 10-2 and Figure 10-3. Significant intercepts based on a 0.15% NiEq cut-off grade are presented in Table 10-4.

Hole-ID	UTM East	UTM North	Elev (masl)	Length (m)	Azimuth (°)	Dip (°)
WS12-193	578286.94	6815402.94	1444.19	462.50	30.00	-85.00
WS12-194	578286.94	6815402.94	1444.19	234.00	30.00	-65.00
WS12-195	578286.94	6815402.94	1444.19	201.20	30.00	-45.00
WS12-196	578286.94	6815402.94	1444.19	223.50	30.00	-55.00
WS12-197	578286.94	6815402.94	1444.19	196.50	0.00	-47.00
WS12-198	576690.53	6815849.37	1481.18	178.00	0.00	-47.00
WS12-199	578328.48	6815373.20	1426.59	200.50	0.00	-55.00
WS12-200	578328.48	6815373.20	1426.59	208.00	0.00	-65.00
WS12-201	576641.17	6815825.15	1487.28	151.00	0.00	-50.00
WS12-202	578378.65	6815356.76	1403.58	260.50	330.00	-85.00
WS12-203	578378.65	6815356.76	1403.58	325.00	330.00	-65.00
WS12-204	578378.65	6815356.76	1403.58	489.00	330.00	-45.00
WS12-205	578378.65	6815356.76	1403.58	455.00	0.00	-55.00
WS12-206	576594.58	6815827.65	1494.45	161.50	0.00	-63.00
WS12-207	576945.39	6815769.41	1479.94	267.00	0.00	-45.00
WS12-208	576991.86	6815890.49	1544.50	142.50	0.00	-72.00
WS12-209	577041.68	6815892.44	1552.25	107.00	0.00	-45.00
WS12-210	578074.55	6815527.22	1496.33	214.50	0.00	-51.00
WS12-211	577344.86	6815754.47	1569.38	75.00	0.00	-54.00
WS12-212	578077.47	6815423.84	1449.60	174.00	0.00	-45.00
WS12-213	577348.92	6815610.72	1533.85	346.50	0.00	-54.00
WS12-214	577624.29	6815574.38	1631.70	493.50	0.00	-50.00
WU12-520	578482.66	6815532.39	1298.90	156.67	200.00	33.00
WU12-521	578482.66	6815532.39	1298.90	302.36	200.00	-27.00
WU12-522	578482.66	6815532.39	1298.90	21.95	200.00	-3.00
WU12-523	578482.66	6815532.39	1298.90	271.27	200.00	-6.90
WU12-524	578482.66	6815532.39	1298.90	200.86	170.00	-9.80
WU12-525	578482.66	6815532.39	1298.90	150.27	170.00	30.00
WU12-526	578482.66	6815532.39	1298.90	101.19	147.00	36.00
WU12-527	578482.66	6815532.39	1298.90	242.32	200.00	-17.00
WU12-528	578482.66	6815532.39	1298.90	290.17	147.00	-9.00
WU12-529	578482.66	6815532.39	1298.90	264.57	147.00	-30.00
WU12-530	578216.77	6815527.99	1303.19	189.28	145.00	-2.00
WU12-531	578216.77	6815527.99	1303.19	215.19	145.00	-15.00
WU12-532	578216.77	6815527.99	1303.19	193.85	145.00	25.00
WU12-533	578216.77	6815527.99	1303.19	129.24	180.00	-16.00
WU12-534	578216.77	6815527.99	1303.19	117.04	180.00	21.00
WU12-535	578216.77	6815527.99	1303.19	94.18	180.00	54.00
WU12-536	578216.77	6815527.99	1303.19	131.06	210.00	33.00
WU12-537	578216.77	6815527.99	1303.19	128.93	210.00	-3.00
WU12-538	578216.77	6815527.99	1303.19	213.06	210.00	-33.00
WU12-539	578216.77	6815527.99	1303.19	242.01	145.00	-30.00
WU12-540	578216.77	6815527.99	1303.19	304.50	145.00	-55.00
WU12-541	578154.21	6815545.54	1302.74	268.22	167.00	-60.00
WU12-542	578154.21	6815545.54	1302.74	205.44	167.00	-30.00
WU12-543	578154.21	6815545.54	1302.74	158.50	167.00	0.00
WU12-544	578154.21	6815545.54	1302.74	154.53	185.00	-10.00
WU12-544 WU12-545	578154.21	6815545.54	1302.74	206.65	225.00	-25.00
WU12-546	578154.21 578150.94	<u>6815545.54</u> 6815542.48	1302.74 1302.74	<u>156.67</u> 75.59	225.00 225.00	-2.00 25.00

Table 10-3 Wellgreen Platinum 2012 Drill Collars

Hole-ID	UTM East	UTM North	Elev (masl)	Length (m)	Azimuth (°)	Dip (°)
WU12-548	578150.94	6815542.48	1302.74	231.34	185.00	-30.00

Table 10-4 Significant Intercepts 2012 Drilling

Hole	From	То	Width	Ni	Cu	Со	Pt	Pd	Au	NiEq	PtEq
	(m)	(m)	(m)	%	%	%	g/t	g/t	g/t	%	g/t
WS12-193	3.05	56.00	52.95	0.240	0.033	0.013	0.093	0.145	0.011	0.318	1.213
WS12-193	104.77	462.50	357.73	0.288	0.108	0.016	0.191	0.250	0.027	0.439	1.677
WS12-194	0.00	177.54	177.54	0.244	0.098	0.014	0.178	0.209	0.039	0.384	1.467
WS12-194	199.00	217.00	18.00	0.370	0.815	0.025	0.444	0.295	0.087	0.876	3.343
WS12-195	0.00	118.71	118.71	0.258	0.065	0.014	0.122	0.182	0.020	0.363	1.385
WS12-195	132.50	151.32	18.82	0.259	0.238	0.016	0.312	0.246	0.055	0.495	1.888
WS12-195	161.24	190.01	28.77	0.719	0.552	0.036	0.551	0.435	0.088	1.195	4.559
WS12-196	0.00	135.72	135.72	0.260	0.086	0.014	0.138	0.197	0.026	0.381	1.454
WS12-196	147.81	162.33	14.52	0.252	0.239	0.018	0.370	0.258	0.108	0.521	1.987
WS12-196	177.98	195.00	17.02	0.415	0.699	0.029	0.806	0.434	0.193	1.021	3.898
WS12-197	0.00	157.00	157.00	0.264	0.070	0.013	0.137	0.194	0.058	0.384	1.465
WS12-197	163.26	184.40	21.14	0.380	0.638	0.024	0.788	0.556	0.141	0.956	3.647
WS12-198	79.00	91.00	12.00	0.109	0.176	0.011	0.027	0.012	0.023	0.204	0.778
WS12-199	0.00	62.29	62.29	0.257	0.085	0.014	0.160	0.217	0.024	0.386	1.472
WS12-199	74.27	180.87	106.60	0.315	0.397	0.020	0.381	0.341	0.118	0.658	2.514
WS12-200	0.00	84.52	84.52	0.253	0.096	0.014	0.143	0.213	0.054	0.386	1.474
WS12-200	110.34	195.55	85.21	0.280	0.460	0.020	0.527	0.331	0.127	0.686	2.617
WS12-201	42.80	71.32	28.52	0.262	0.204	0.017	0.352	0.171	0.030	0.482	1.840
WS12-202	0.00	106.54	106.54	0.268	0.078	0.015	0.150	0.213	0.021	0.391	1.493
WS12-202	141.35	260.50	119.15	0.265	0.086	0.015	0.150	0.201	0.021	0.390	1.489
WS12-203	0.00	230.59	230.59	0.269	0.098	0.016	0.180	0.226	0.037	0.413	1.578
WS12-203	237.37	325.00	87.63	0.297	0.186	0.017	0.246	0.251	0.065	0.502	1.918
WS12-204	0.00	122.36	122.36	0.266	0.077	0.016	0.142	0.201	0.020	0.386	1.472
WS12-204	129.39	207.00	77.61	0.262	0.262	0.016	0.341	0.274	0.060	0.519	1.982
WS12-204	256.66	274.90	18.24	0.125	0.215	0.011	0.235	0.147	0.076	0.317	1.210
WS12-204	281.50	312.00	30.50	0.105	0.112	0.012	0.178	0.092	0.083	0.242	0.922
WS12-204	330.00	346.10	16.10	0.078	0.144	0.012	0.104	0.040	0.035	0.188	0.718
WS12-204	393.42	489.00	95.58	0.265	0.108	0.017	0.329	0.259	0.022	0.456	1.741
WS12-205	0.00	185.00	185.00	0.260	0.121	0.016	0.214	0.214	0.040	0.421	1.607
WS12-205	197.00	241.10	44.10	0.354	0.877	0.026	0.559	0.307	0.203	0.941	3.591
WS12-205	261.30	299.00	37.70	0.125	0.219	0.012	0.197	0.096	0.053	0.298	1.138
WS12-205	363.10	455.00	91.90	0.344	0.162	0.016	0.327	0.378	0.034	0.570	2.175
WS12-206	25.82	39.30	13.48	0.217	0.046	0.014	0.106	0.154	0.014	0.306	1.167
WS12-207	200.73	229.00	28.27	0.121	0.216	0.014	0.084	0.040	0.050	0.258	0.984
WS12-208	0.00	128.50	128.50	0.364	0.660	0.029	0.717	0.364	0.208	0.926	3.536
WS12-209	0.00	69.50	69.50	0.473	0.443	0.030	0.520	0.322	0.097	0.879	3.355
WS12-210	0.00	101.40	101.40	0.259	0.057	0.015	0.114	0.172	0.014	0.358	1.368
WS12-210	123.15	143.50	20.35	0.286	0.104	0.015	0.189	0.274	0.035	0.440	1.679
WS12-210	151.50	187.00	35.50	0.206	0.274	0.015	0.190	0.147	0.057	0.409	1.562
WS12-211	1.50	69.00	67.50	0.378	0.548	0.023	0.624	0.433	0.088	0.849	3.242
WS12-212	0.00	174.00	174.00	0.249	0.046	0.015	0.101	0.160	0.012	0.339	1.293
WS12-213	0.00	60.34	60.34	0.285	0.164	0.016	0.162	0.242	0.021	0.447	1.707
WS12-213	67.79	259.30	191.51	0.245	0.189	0.015	0.383	0.299	0.066	0.491	1.873
WS12-214	0.00	379.50	379.50	0.272	0.209	0.017	0.278	0.259	0.063	0.494	1.886

Minimum width 10 metres; Maximum internal dilution 6 metres.

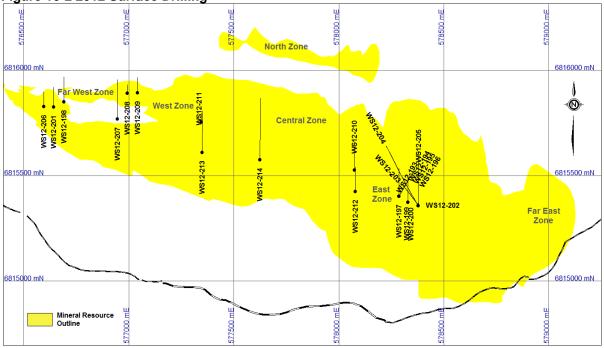
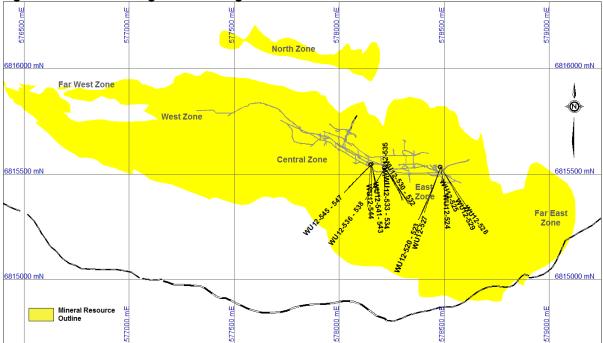



Figure 10-2 2012 Surface Drilling

Figure 10-3 2012 Underground Drilling

10.2.3 2013 Drill Program

The drilling conducted by Wellgreen Platinum in 2013 was designed to extend, expand, and upgrade the resource of the Wellgreen deposit. The program initially focused on defining and expanding the Far East Zone with a second program drilled in-fill holes in the resource

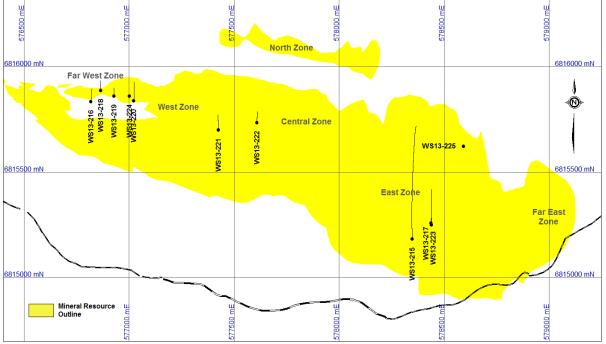
alone with dual purpose geologic definition and ground water monitoring wells in Wellgreen and areas of potential future mine infrastructure.

The first drill program was completed by Boart Longyear of South Jordan, Utah, USA. A total of nine drillholes were completed during the 2013 drill program from July to October, totalling 2,207 metres. Eight of the nine holes were drilled with 5.5" RC, one of which was continued in HQ and later downsized to NQ, and one hole was drilled HQ. All drilling was run in three metre intervals.

The second program was completed by Midnight Sun Drilling of Whitehorse. A total of eighteen vertical holes were completed during the program from October to November, totaling 765.88 metres. All holes were drilled with 4.5" RC and were run in five foot intervals (1.52 metres).

Drill hole collar information is shown in Table 10-5 and illustrated in Figure 10-4. Significant intercepts based on a 0.15% NiEq cut-off grade are presented in Table 10-6.

Hole-ID	UTM East	UTM North	Elev (masl)	Length (m)	Azimuth (°)	Dip (°)
MW13-01	577001.87	6815858.76	1527.43	79.25	0.00	-90.00
MW13-02A	576141.92	6815645.82	1298.76	33.53	0.00	-90.00
MW13-02B	576133.87	6815653.00	1298.43	48.77	0.00	-90.00
MW13-03A	571062.44	6818429.77	1055.65	28.35	0.00	-90.00
MW13-03B	571072.71	6818420.25	1054.48	46.79	0.00	-90.00
MW13-04A	577731.90	6814791.54	1291.66	22.25	0.00	-90.00
MW13-04B	577732.24	6814799.08	1291.28	46.63	0.00	-90.00
MW13-05A	578587.77	6815617.52	1299.16	7.32	0.00	-90.00
MW13-06A	580589.54	6815443.36	1138.39	7.32	0.00	-90.00
MW13-06B	580593.06	6815437.95	1134.20	39.62	0.00	-90.00
MW13-07A	582993.43	6816606.88	1010.01	16.20	0.00	-90.00
MW13-07B	582991.17	6816603.73	1009.97	34.29	0.00	-90.00
MW13-08A	583907.75	6810188.50	1438.54	34.70	0.00	-90.00
MW13-08B	583903.06	6810192.89	1440.79	52.73	0.00	-90.00
MW13-09A	580295.61	6813122.73	1162.90	15.20	0.00	-90.00
MW13-09B	580289.23	6813111.33	1162.63	39.62	0.00	-90.00
WS13-215	578347.45	6815182.35	1369.79	831.00	358.00	-55.13
WS13-216	576818.93	6815833.00	1459.09	103.00	2.00	-52.02
WS13-217	578439.45	6815248.90	1357.06	353.00	0.00	-61.25
WS13-218	576864.78	6815886.04	1485.80	75.00	2.00	-50.54
WS13-219	576927.25	6815860.03	1511.67	64.00	1.00	-50.00
WS13-220	577022.75	6815836.86	1518.91	150.00	1.00	-50.86
WS13-221	577425.36	6815699.64	1590.93	175.00	1.00	-66.42
WS13-222	577609.08	6815732.81	1704.24	172.00	0.00	-71.29
WS13-223	578438.35	6815255.87	1358.85	104.00	1.00	-60.00
WS13-224	577001.87	6815858.76	1527.43	121.92	0.00	-90.00
WS13-225	578592.86	6815620.49	1299.71	91.44	0.00	-90.00


 Table 10-5 Wellgreen Platinum 2013 Drill Collars

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WS13-215	0.00	762.00	762.00	0.290	0.153	0.016	0.243	0.232	0.051	0.476	1.817
WS13-215	771.00	783.00	12.00	0.127	0.252	0.009	0.077	0.033	0.028	0.262	1.000
WS13-216	43.00	79.00	36.00	0.144	0.243	0.014	0.218	0.096	0.070	0.337	1.288
WS13-217	0.00	353.00	353.00	0.285	0.089	0.016	0.182	0.236	0.039	0.429	1.636
WS13-218	0.00	22.00	22.00	0.244	0.625	0.020	0.565	0.280	0.214	0.731	2.789
WS13-219	0.00	64.00	64.00	0.289	0.661	0.022	0.814	0.407	0.282	0.889	3.394
WS13-220	0.00	150.00	150.00	0.242	0.452	0.020	0.566	0.308	0.189	0.665	2.540
WS13-221	0.00	142.00	142.00	0.242	0.194	0.015	0.299	0.254	0.093	0.466	1.780
WS13-222	0.00	172.00	172.00	0.326	0.187	0.017	0.256	0.257	0.041	0.528	2.017
WS13-223	4.20	104.00	99.80	0.269	0.053	0.015	0.149	0.183	0.021	0.378	1.444
WS13-224	0.00	76.20	76.20	0.177	0.145	0.013	0.361	0.185	0.064	0.382	1.458
WS13-225	1.52	91.44	89.92	0.186	0.021	0.013	0.066	0.098	0.008	0.246	0.940
WU12-520	11.89	148.11	136.22	0.254	0.150	0.015	0.185	0.226	0.042	0.418	1.597
WU12-521	29.57	302.36	272.79	0.227	0.105	0.014	0.204	0.186	0.036	0.372	1.421
WU12-523	22.46	117.96	95.50	0.267	0.213	0.016	0.244	0.258	0.049	0.477	1.819
WU12-523	128.32	271.27	142.95	0.239	0.082	0.014	0.216	0.198	0.033	0.380	1.450
WU12-524	31.09	131.06	99.97	0.238	0.188	0.016	0.262	0.231	0.043	0.439	1.675
WU12-524	140.21	200.86	60.65	0.264	0.083	0.015	0.257	0.253	0.034	0.426	1.625
WU12-525	13.72	150.27	136.55	0.253	0.133	0.016	0.201	0.201	0.042	0.414	1.579
WU12-526	39.32	56.08	16.76	0.168	0.100	0.013	0.059	0.053	0.010	0.248	0.948
WU12-526	66.07	101.19	35.12	0.231	0.129	0.014	0.234	0.161	0.066	0.396	1.510
WU12-527	28.33	119.41	91.08	0.223	0.175	0.016	0.297	0.269	0.057	0.436	1.663
WU12-527	126.71	242.32	115.61	0.285	0.110	0.015	0.212	0.253	0.033	0.443	1.691
WU12-528	72.85	249.68	176.83	0.278	0.185	0.018	0.304	0.240	0.042	0.492	1.880
WU12-529	87.78	201.78	114.00	0.143	0.150	0.013	0.247	0.140	0.077	0.318	1.213
WU12-529	209.70	264.57	54.87	0.278	0.106	0.016	0.220	0.226	0.030	0.434	1.656
WU12-530	0.00	16.51	16.51	0.300	0.579	0.018	0.599	0.412	0.095	0.767	2.927
WU12-530	23.12	189.28	166.16	0.310	0.127	0.016	0.183	0.239	0.032	0.468	1.785
WU12-531	0.00	17.98	17.98	0.279	0.664	0.018	0.587	0.386	0.100	0.771	2.943
WU12-531	25.60	215.19	189.59	0.265	0.130	0.015	0.234	0.230	0.046	0.436	1.665
WU12-532	0.00	193.85	193.85	0.247	0.102	0.014	0.185	0.208	0.038	0.390	1.487
WU12-533	0.00	10.36	10.36	0.239	0.980	0.018	0.651	0.406	0.121	0.870	3.319
WU12-533	19.51	129.24	109.73	0.312	0.120	0.015	0.191	0.252	0.030	0.469	1.789
WU12-534	0.00	117.04	117.04	0.279	0.135	0.016	0.198	0.223	0.036	0.440	1.680
WU12-535	0.00	10.87	10.87	0.218	0.459	0.015	0.595	0.382	0.253	0.668	2.549
WU12-535	18.03	94.18	76.15	0.289	0.131	0.015	0.223	0.242	0.042	0.460	1.754
WU12-536	15.51	131.06	115.55	0.270	0.076	0.015	0.139	0.187	0.025	0.387	1.477
WU12-537	0.00	128.93	128.93	0.279	0.137	0.015	0.214	0.264	0.043	0.452	1.726
WU12-538	0.00	17.98	17.98	0.161	0.478	0.013	0.710	0.388	0.111	0.614	2.344
WU12-538	25.76	213.06	187.30	0.268	0.102	0.015	0.199	0.220	0.039	0.417	1.592
WU12-539	0.00	21.03	21.03	0.440	0.774	0.027	0.803	0.720	0.121	1.091	4.166
WU12-539	27.13	242.01	214.88	0.279	0.145	0.015	0.231	0.255	0.036	0.457	1.746
WU12-540	4.57	21.03	16.46	0.430	0.766	0.024	0.852	0.543	0.195	1.079	4.117
WU12-540	36.27	59.13	22.86	0.435	0.718	0.018	1.260	1.024	0.240	1.238	4.726
WU12-540	80.47	304.50	224.03	0.284	0.132	0.014	0.218	0.240	0.047	0.451	1.722
WU12-541	0.00	44.04	44.04	0.236	0.474	0.015	0.582	0.328	0.120	0.652	2.490
WU12-541	54.99	268.22	213.23	0.351	0.144	0.017	0.236	0.348	0.034	0.543	2.073

Table 10-6 Significant Intercepts 2013 Drilling

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WU12-542	17.27	205.44	188.17	0.273	0.108	0.016	0.205	0.246	0.036	0.430	1.642
WU12-543	13.94	158.11	144.17	0.269	0.090	0.015	0.149	0.218	0.022	0.398	1.519
WU12-544	11.73	154.53	142.80	0.304	0.103	0.016	0.193	0.274	0.027	0.459	1.751
WU12-545	22.76	203.61	180.85	0.280	0.095	0.016	0.172	0.250	0.024	0.422	1.609
WU12-546	19.93	156.67	136.74	0.271	0.083	0.015	0.144	0.207	0.022	0.393	1.502
WU12-547	0.00	75.59	75.59	0.249	0.118	0.014	0.190	0.241	0.042	0.404	1.540
WU12-548	16.76	231.34	214.58	0.262	0.090	0.015	0.187	0.222	0.028	0.402	1.533

Figure 10-4 2013 Drilling

10.2.4 2013 Re-Sampling of Historic Drill Core

Wellgreen Platinum sampled and assayed previously non-sampled core intervals and reassayed all available sampled intervals from the 1987-88 programs in 2013. A total of 3,087 samples were analyzed from 108 holes (8,462 metres). The locations of these drill holes are shown in Figure 10-5. Significant intercepts based on a 0.15% NiEq cut-off grade are presented in Table 10-7.

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WS87-061	42.50	84.30	41.80	0.849	0.263	0.628	0.025	0.846	0.415	0.213	3.242
WS87-062	73.25	119.40	46.15	0.853	0.270	0.626	0.021	0.814	0.475	0.232	3.257
WS87-064	2.13	56.00	53.87	0.792	0.337	0.456	0.021	0.651	0.430	0.148	3.023
WS87-065	2.44	23.47	21.03	0.794	0.338	0.369	0.021	0.726	0.472	0.182	3.031
WS87-065	30.78	104.10	73.32	0.905	0.360	0.625	0.025	0.757	0.482	0.090	3.455
WS87-066	2.44	78.24	75.80	0.500	0.318	0.131	0.015	0.235	0.329	0.033	1.908
WS87-066	89.76	103.18	13.42	1.065	0.534	0.683	0.034	0.617	0.413	0.079	4.065
WS87-067	7.64	151.50	143.86	0.481	0.297	0.152	0.014	0.235	0.291	0.038	1.837
WS87-068	3.05	49.93	46.88	0.530	0.314	0.175	0.013	0.282	0.390	0.038	2.024

Table 10-7 Significant Intercer	ots From Re-sampled 1987-1988 Core
Table le l'elginneant interee	

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WS87-069	3.05	33.22	30.17	0.420	0.277	0.109	0.014	0.173	0.257	0.020	1.604
WS87-070	6.10	56.00	49.90	0.324	0.219	0.078	0.012	0.121	0.175	0.016	1.235
WS87-071	18.29	102.00	83.71	0.359	0.228	0.104	0.012	0.155	0.212	0.032	1.371
WS87-072	4.88	38.85	33.97	0.396	0.264	0.116	0.012	0.144	0.223	0.022	1.511
WS87-073	9.10	28.90	19.80	0.374	0.237	0.068	0.011	0.217	0.253	0.023	1.427
WS87-074	10.51	47.55	37.04	0.389	0.160	0.259	0.013	0.276	0.147	0.107	1.483
WS87-074	61.87	83.80	21.93	0.599	0.166	0.491	0.015	0.634	0.250	0.160	2.287
WS87-075	13.22	49.15	35.93	0.563	0.346	0.167	0.016	0.341	0.300	0.016	2.149
WS87-076	4.88	39.95	35.07	0.799	0.511	0.167	0.020	0.476	0.509	0.026	3.048
WS87-077	3.05	115.15	112.10	0.460	0.193	0.278	0.016	0.363	0.210	0.094	1.756
WS87-078	3.81	84.43	80.62	0.504	0.308	0.109	0.014	0.301	0.384	0.024	1.922
WS87-079	1.83	19.87	18.04	0.621	0.380	0.120	0.015	0.394	0.499	0.030	2.370
WS87-080	3.05	36.00	32.95	0.755	0.443	0.185	0.017	0.490	0.640	0.037	2.884
WS87-081	3.05	95.40	92.35	0.475	0.200	0.277	0.017	0.400	0.226	0.070	1.812
WS87-082	1.22	26.43	25.21	0.274	0.183	0.074	0.011	0.100	0.149	0.013	1.047
WS87-083	6.40	42.06	35.66	0.338	0.216	0.094	0.012	0.144	0.203	0.019	1.289
WS87-084	10.73	59.30	48.57	0.296	0.181	0.086	0.010	0.155	0.183	0.018	1.128
WS87-085	9.14	46.23	37.09	0.394	0.182	0.127	0.014	0.359	0.261	0.075	1.505
WS87-085	55.23	67.75	12.52	0.326	0.039	0.034	0.002	0.749	0.515	0.038	1.244
WS87-086	3.05	69.70	66.65	0.569	0.370	0.176	0.016	0.254	0.291	0.027	2.170
WS87-087	3.66	31.90	28.24	0.787	0.207	0.671	0.016	0.964	0.275	0.118	3.003
WS87-087	39.70	162.72	123.02	0.755	0.230	0.588	0.019	0.714	0.342	0.245	2.882
WS87-088	3.05	20.32	17.27	0.469	0.304	0.140	0.016	0.174	0.295	0.0240	1.789
WS87-088	34.13	150.00	115.87	0.553	0.326	0.213	0.016	0.260	0.349	0.020	2.109
WS87-090	4.32	52.32	48.00	0.406	0.275	0.087	0.015	0.156	0.240	0.000	1.550
WS87-090	64.32	118.61	54.29	0.400	0.273	0.120	0.015	0.130	0.245	0.021	1.576
WS87-090	158.00	169.84	11.84	0.660	0.258	0.397	0.010	0.590	0.393	0.102	2.519
WS87-091	3.05	75.40	72.35	0.367	0.230	0.074	0.020	0.157	0.231	0.017	1.400
WS87-091	11.15	95.15	84.00	0.701	0.240	0.437	0.000	0.657	0.407	0.184	2.677
WS87-092 WS87-093	9.45	70.10	60.65	0.373	0.279	0.437	0.000	0.037	0.407	0.032	1.425
WS87-093	20.42	148.15	127.73	0.419	0.220	0.137	0.012	0.205	0.232	0.052	1.599
WS87-095	3.00	22.55	19.55	0.389	0.232	0.137	0.014	0.200	0.232	0.039	1.486
WS87-095	151.44	173.61	22.17	0.369	0.220	0.328	0.014	0.170	0.074	0.065	1.408
WS87-090	8.45	75.90	67.45	0.309	0.253	0.151	0.013	0.235	0.362	0.005	1.689
WS87-097	108.34	128.00	19.66	0.303	0.203	0.082	0.013	0.233	0.302	0.020	1.158
WS87-098	71.93	161.24	89.31	0.499	0.205	0.002	0.008	0.306	0.302	0.104	1.905
WS87-099	12.00	28.84	16.84	0.194	0.098	0.147	0.000	0.062	0.029	0.029	0.742
WS87-100	3.35	82.54	79.19	0.360	0.030	0.147	0.011	0.002	0.029	0.023	1.373
WS87-100	1.83	210.48	208.65	0.275	0.222	0.025	0.014	0.084	0.170	0.023	1.050
WS87-102 WS87-103	3.66	110.20	106.54	0.275	0.266	0.025	0.015	0.262	0.130	0.014	1.700
WS87-103	151.79	175.00	23.21	0.385	0.200	0.319	0.013	0.365	0.207	0.181	1.469
WS87-104 WS87-104	182.95	215.49	32.54	0.385	0.095	0.292	0.011	0.305	0.060	0.181	1.231
WS87-104 WS87-105	3.66	45.25	41.59	0.322	0.140	0.292	0.012	0.139	0.080	0.007	1.415
WS87-105 WS88-106	3.06	45.25 52.25	41.59	0.371	0.216	0.093	0.012	0.245	0.221	0.039	1.526
WS88-106 WS88-107											
WS88-107 WS88-108	90.95	116.00 85.28	25.05 68.72	0.382	0.179	0.369	0.015	0.105	0.042	0.066	1.458
WS88-108	16.56			0.260	0.204	0.017	0.013		0.090	0.015	0.993
	90.85	108.81	17.96	0.190	0.143	0.020	0.010	0.046	0.081	0.011	0.725
WS88-109	34.28	55.35	21.07	0.660	0.374	0.130	0.016	0.633	0.295	0.046	2.520
WS88-110	4.70	35.46	30.76	0.264	0.209	0.019	0.014	0.050	0.090	0.006	1.007
WS88-110	43.63	165.87	122.24	0.397	0.249	0.109	0.015	0.202	0.198	0.034	1.517
WS88-111	74.26	124.80	50.54	0.416	0.257	0.089	0.014	0.254	0.208	0.051	1.588

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WS88-112	12.00	32.18	20.18	0.250	0.190	0.019	0.013	0.058	0.115	0.011	0.954
WS88-112	39.90	71.74	31.84	0.410	0.260	0.072	0.016	0.235	0.249	0.027	1.566
WS88-112	79.82	154.80	74.98	0.635	0.250	0.345	0.018	0.585	0.331	0.168	2.425
WS88-113	39.12	61.17	22.05	0.422	0.180	0.342	0.015	0.246	0.102	0.084	1.610
WS88-114	4.96	69.03	64.07	0.301	0.214	0.057	0.013	0.097	0.130	0.017	1.149
WS88-114	76.25	355.42	279.17	0.420	0.263	0.105	0.014	0.216	0.254	0.031	1.601
WS88-117	203.14	235.00	31.86	0.217	0.109	0.148	0.014	0.037	0.017	0.100	0.829
WS88-119	59.75	83.57	23.82	0.300	0.218	0.038	0.014	0.098	0.138	0.012	1.146
WS88-120	8.00	27.46	19.46	0.402	0.257	0.067	0.015	0.258	0.186	0.027	1.534
WS88-120	50.75	123.30	72.55	0.470	0.252	0.188	0.020	0.323	0.160	0.060	1.793
WS88-120	132.35	270.66	138.31	0.494	0.303	0.114	0.017	0.292	0.304	0.036	1.885
WS88-122	61.25	140.61	79.36	0.209	0.161	0.014	0.013	0.048	0.065	0.012	0.799
WS88-123	110.64	131.92	21.28	0.315	0.193	0.110	0.010	0.126	0.191	0.042	1.204
WS88-124	79.91	118.14	38.23	0.367	0.259	0.052	0.015	0.132	0.188	0.034	1.403
WS88-124	144.01	155.55	11.54	0.458	0.195	0.188	0.010	0.551	0.194	0.049	1.749
WS88-125	120.85	133.25	12.40	0.240	0.164	0.039	0.009	0.085	0.124	0.043	0.915
WS88-127	3.35	38.80	35.45	0.354	0.217	0.104	0.011	0.167	0.263	0.026	1.353
WS88-128	17.00	58.52	41.52	0.419	0.279	0.092	0.014	0.179	0.258	0.018	1.598
WS88-129	22.02	50.49	28.47	0.304	0.223	0.031	0.014	0.104	0.138	0.013	1.160
WS88-130	11.00	61.67	50.67	0.308	0.191	0.086	0.012	0.172	0.152	0.013	1.177
WS88-131	24.00	39.47	15.47	0.287	0.226	0.026	0.013	0.063	0.109	0.003	1.094
WS88-131	117.35	142.60	25.25	0.516	0.302	0.154	0.012	0.270	0.463	0.035	1.969
WS88-132	7.92	75.82	67.90	0.350	0.221	0.082	0.012	0.195	0.167	0.030	1.337
WS88-133	9.14	28.85	19.71	0.507	0.295	0.091	0.015	0.363	0.345	0.073	1.934
WS88-133	38.96	98.20	59.24	0.394	0.237	0.087	0.014	0.254	0.216	0.041	1.504
WS88-134	4.88	44.78	39.90	0.360	0.220	0.096	0.013	0.220	0.167	0.025	1.376
WS88-135	11.30	47.18	35.88	0.299	0.189	0.056	0.013	0.176	0.148	0.020	1.141
WS88-137	2.97	75.00	72.03	0.402	0.271	0.109	0.000	0.222	0.258	0.000	1.534
WS88-137	82.91	135.00	52.09	0.430	0.205	0.202	0.000	0.444	0.280	0.000	1.642
WS88-137	146.00	172.90	26.90	0.726	0.387	0.336	0.000	0.653	0.358	0.000	2.771
WS88-138	59.27	141.80	82.53	0.631	0.328	0.348	0.019	0.378	0.272	0.067	2.409
WS88-139	4.27	199.38	195.11	0.471	0.259	0.156	0.016	0.318	0.278	0.054	1.797
WS88-139	213.66	375.60	161.94	0.887	0.372	0.534	0.022	0.733	0.448	0.174	3.385
WS88-140	24.38	63.40	39.02	0.313	0.184	0.138	0.000	0.216	0.174	0.000	1.193
WS88-141	0.00	97.00	97.00	0.340	0.238	0.071	0.013	0.116	0.168	0.025	1.299
WS88-141	108.20	145.00	36.80	0.318	0.158	0.125	0.009	0.202	0.197	0.102	1.212
WS88-142	16.15	214.42	198.27	0.435	0.295	0.107	0.015	0.166	0.224	0.028	1.659
WU88-483	83.50	130.60	47.10	0.438	0.193	0.236	0.016	0.341	0.190	0.096	1.671
WU88-484	119.90	163.54	43.64	0.612	0.287	0.367	0.021	0.409	0.234	0.098	2.334
WU88-485	21.45	38.95	17.50	0.796	0.455	0.522	0.025	0.301	0.201	0.040	3.038
WU88-485	45.30	184.56	139.26	0.799	0.290	0.586	0.018	0.704	0.376	0.165	3.049
WU88-486	76.00	135.60	59.60	0.997	0.230	0.721	0.010	1.219	0.620	0.428	3.806
WU88-486	156.25	168.10	11.85	0.489	0.230	0.397	0.015	0.246	0.165	0.027	1.865
WU88-487	114.10	133.10	19.00	0.405	0.230	0.355	0.016	0.240	0.103	0.027	1.811
WU88-487	142.76	157.50	14.74	0.776	0.245	0.691	0.018	0.665	0.313	0.111	2.962
WU88-487	192.90	207.30	14.74	0.335	0.245	0.091	0.018	0.003	0.313	0.024	1.279
WU88-488	15.85	140.78	124.93	0.509	0.198	0.104	0.011	0.148	0.137	0.024	1.944
WU88-489	1.57	22.25	20.68	0.309	0.229	0.284	0.010	0.388	0.244	0.090	1.786
WU88-499	15.95	39.30	20.00	0.466	0.130	0.520	0.011	0.469	0.502	0.137	2.802
WU88-490		109.90	52.70	0.734	0.278	0.320	0.015	0.375	0.508	0.124	2.556
	57.20										
WU88-491	19.41	43.47	24.06	0.544	0.226	0.361	0.013	0.463	0.270	0.054	2.075

Hole	From (m)	To (m)	Width (m)	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	NiEq %	PtEq g/t
WU88-491	52.70	146.90	94.20	0.442	0.275	0.130	0.016	0.210	0.248	0.043	1.688
WU88-492	74.30	109.25	34.95	0.429	0.079	0.078	0.006	0.861	0.414	0.156	1.639
WU88-493	10.30	49.00	38.70	0.558	0.244	0.317	0.016	0.428	0.246	0.137	2.128
WU88-493	68.70	79.55	10.85	0.619	0.352	0.219	0.018	0.335	0.450	0.062	2.362
WU88-494	0.00	35.35	35.35	0.793	0.332	0.451	0.021	0.629	0.507	0.163	3.029
WU88-495	1.10	46.93	45.83	1.142	0.301	0.875	0.024	1.206	0.814	0.312	4.360
WU88-495	67.01	92.70	25.69	0.548	0.293	0.185	0.015	0.371	0.423	0.053	2.090
WU88-495	94.60	105.16	10.56	0.164	0.028	0.014	0.002	0.216	0.350	0.114	0.624
WU88-496	2.23	38.16	35.93	2.009	0.787	1.572	0.047	1.413	1.169	0.273	7.668
WU88-497	6.24	17.10	10.86	0.360	0.060	0.027	0.003	0.362	0.378	0.650	1.372
WU88-498	48.51	181.66	133.15	1.185	0.646	0.573	0.028	0.686	0.634	0.119	4.523
WU88-500	8.40	90.11	81.71	0.840	0.398	0.481	0.021	0.582	0.394	0.151	3.206
WU88-500	98.76	114.00	15.24	0.676	0.310	0.309	0.023	0.521	0.366	0.160	2.580
WU88-501	33.50	105.50	72.00	0.781	0.287	0.527	0.023	0.603	0.344	0.300	2.979
WU88-501	114.50	126.10	11.60	0.573	0.204	0.380	0.014	0.519	0.297	0.165	2.186
WU88-501	137.40	154.84	17.44	0.473	0.279	0.126	0.014	0.289	0.314	0.047	1.806
WU88-502	8.10	170.69	162.59	0.412	0.216	0.170	0.016	0.289	0.177	0.050	1.572
WU88-503	25.95	91.44	65.49	0.445	0.262	0.148	0.016	0.242	0.260	0.039	1.698
WU88-504	1.60	13.11	11.51	0.464	0.274	0.139	0.013	0.280	0.313	0.030	1.772
WU88-505	0.00	49.68	49.68	0.518	0.336	0.127	0.015	0.236	0.345	0.028	1.979
WU88-507	8.80	54.50	45.70	0.545	0.304	0.247	0.011	0.357	0.291	0.016	2.079
WU88-508	134.50	146.29	11.79	1.308	0.481	0.875	0.036	1.103	0.742	0.325	4.994
WU88-508	167.30	245.06	77.76	0.458	0.290	0.120	0.016	0.222	0.266	0.034	1.750
WU88-509	173.23	197.15	23.92	0.610	0.276	0.171	0.013	0.575	0.636	0.082	2.327
WU88-509	207.50	217.93	10.43	0.585	0.330	0.196	0.022	0.364	0.338	0.049	2.232
WU88-510	166.03	221.59	55.56	0.673	0.262	0.388	0.018	0.600	0.403	0.159	2.571
WU88-511	190.20	248.72	58.52	0.717	0.169	0.531	0.017	0.815	0.435	0.275	2.738
WU88-514	186.42	336.19	149.77	0.459	0.287	0.132	0.016	0.206	0.289	0.038	1.752
WU88-515	153.15	164.90	11.75	0.163	0.069	0.087	0.013	0.109	0.055	0.031	0.621
WU88-515	182.40	366.80	184.40	0.426	0.253	0.135	0.014	0.218	0.269	0.044	1.625
WU88-515	377.90	401.73	23.83	0.436	0.285	0.108	0.015	0.177	0.278	0.029	1.663
WU88-516	451.71	467.46	15.75	0.267	0.141	0.035	0.008	0.061	0.091	0.336	1.020

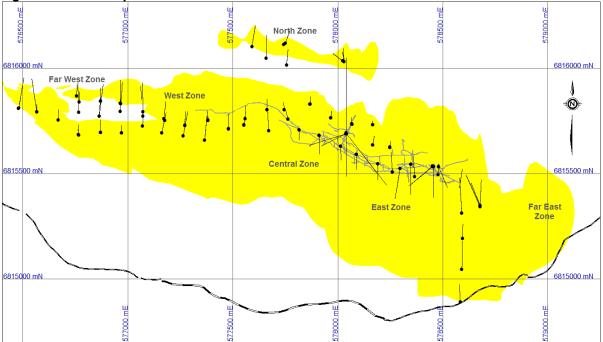


Figure 10-5 Re-sampled 1987-1988 Drill Holes

10.3 Recovery

Core recovery is generally good to excellent and is not considered to be a factor affecting resource estimation.

10.4 Collar Surveys

Prior to the 2013 field season, drill collars were spotted with a compass and chain off the local mine grid, with the final completed collars surveyed with a hand held GPS, compass and chain or a total station GPS, or not at all. In 2013 all collars were spotted using a handheld GPS and surveyed with a DGPS.

10.5 Downhole Surveys

Down-hole surveys were performed differently in different years depending on the operator at the time. HudBay, Archer-Cathro, and Northern Platinum (from 1996-2005) used acid dip tests to determine hole deviation, either at regular intervals or, in the case of Northern Platinum, at the end of each hole. Coronation Minerals used acid dip tests in 2006 and 2007, and used a Reflex Single Shot magnetic tool in 2008. Northern Platinum (from 2009-2010) and Prophecy Resources Corp. (2011) reported use of a ReflexIt© tool, and survey readings were collected approximately 9 metres off the bottom of the hole and at approximately 152 metre intervals up the hole, however, no azimuth data was recorded.

In 2012, Wellgreen Platinum completed down-hole surveys using the Reflex Maxibor II© tool. Survey readings were collected every 3 metres up the hole. Some measurements or surveys were subject to tool malfunction and deemed unreliable.

In 2013, Wellgreen Platinum completed down-hole surveys using the Icefield Tools Gyro Shot® tool. Survey readings were collected approximately 9 metres off the bottom of the hole and at every 20' (18 metres) up the hole.

Two of the geologic/groundwater holes drilled in the Wellgreen deposit were completely sampled and logged. All collars were spotted with a hand-held GPS and were surveyed with a DGPS. Down-hole surveys were not conducted due to the shallow lengths and vertical dips of the holes.

10.6 Sample Length/True Thickness

The mineralized zone is irregular and not tabular in shape and true thickness cannot be determined and was not used as a factor in the resource model.

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

11.1 Sampling Methods

11.1.1 Historic Drill Programs 1952-1988

Sampling details for historic programs have not been verified by GeoSim. No documented quality assurance/quality control (QA/QC) programs were available for review. However, based on assay results it appears that Hudson Yukon Mining only sampled intervals considered to be well mineralized.

Drill programs in 1987-1988 were supervised by Archer Cathro & Associates Ltd. Assessment reports filed from these years do not document sampling or analytical details, however only "mineralized" intervals were sampled. In 1987 mineralized portions of 53 older underground core holes were re-assayed for Cu, Ni, Co, Au, Pt, and Pd.

Wellgreen Platinum sampled and assayed previously non-sampled core intervals and reassayed all available sampled intervals from the 1987-88 programs in 2013. A total of 3,087 samples were analyzed from 108 holes (8,462 metres).

11.1.2 Northern Platinum Programs 1996-2005

There is no documentation on sampling details for the older Northern Platinum programs, however based on handwritten assays in paper drill logs samples were taken every five feet (1.52 metres) which were assayed for Cu, Ni, and Co, and sometimes for Pt, Pd, and Au.

11.1.3 Coronation Minerals Programs 2006-2008

The drill core was logged and sampled by the company geologist and assistants under the direct supervision of Mr. Rory Calhoun, P.Geo., at the designated facilities of the Coronation Minerals base camp on site. The geologist would record lithology, mineralization, structures, sample number, etc., and the assistants would record the geotechnical data (rock quality designation (RQD)) and recovery.

Sample length was variable based on lithology and mineralization observed by the geologist and the core was marked accordingly. Most sampled intervals were 1.52 metres or five feet in length. The assistant transported the core into the saw shack and cut it in half using a core saw. After cutting, the core was returned to the core tray and the geologist would sample it. Half of the split core would be placed in a plastic sample bag with the sample tag. The sample number was also written on the outside of each bag for easy identification. No sample tags were left in the core trays.

All of the data from logging the core was recorded in hand written logs and then transferred to Microsoft Excel[™] spreadsheets, for later import into a geological software package.

11.1.4 Northern Platinum 2009-2010 Programs

All samples, including field-inserted Standards and Blanks, were sent to Loring Laboratories in Calgary, AB for assaying. Similar to the Coronation Minerals programs, Northern Platinum sampled core based on lithology and observed mineralization, and where no contacts were present used a nominal five feet (1.52 metres) sample interval.

11.1.5 Wellgreen Platinum Programs 2011-2013

The sampling methodology adopted by Wellgreen Platinum was as follows:

The drill core is delivered to the core shack by the drill contractor, and the core boxes are sorted and placed in groups of three. The group of boxes is photographed, and run markers and other marker blocks are checked for accuracy.

The geologist or technician collects RQD and recovery data, and the geologist logs the core. Prior to 2013 all recovery, RQD, and geology data was hand-written onto paper forms which were then entered into spreadsheets. From 2013 onwards, all of this data is captured digitally in an Access database.

Ideally there is only one geologist logging the core for consistency. The minimum sample unit is two feet; maximum sample length is three metres, and samples do not cross lithological contacts. In 2013, the sample interval was written on a lab-provided tag which is then stapled into the box. The tag displays the sample number and interval. Previously, the sample was marked on the box with the footage and sample number in permanent marker.

Processed boxes of core are taken to the core cutting facility for cutting by a technician. The saw uses fresh water which drains into sump below the floor before decanting to the creek. The core is cut and the technician places the samples in clean plastic bags with a sample tag. The sample number is written on the outside of the sample bag. Starting in 2012, half of the core was taken for possible future metallurgical sample while a quarter is left in the box and another quarter sent to the lab for assay.

11.1.6 Wellgreen Platinum Soil Geochemical Sampling 2012

Soil samples were taken on a 25 metre x 25 metre nominal spacing across the Property, and soil augers and mattocks were used to try to get to the B or C horizons. The samples were placed in Kraft sample bags and shipped to the ALS Global preparation facility in Whitehorse, YT. Sample pulps were then sent to ALS Global's lab in Vancouver, BC for assay.

The following QA/QC controls were inserted into the sample batches before shipment:

Blanks CDN0BL-10 (Granitic Material): 3g of material was inserted every 25th sample and every 100th sample contained 30g of material. All samples were analyzed by the ME-ICP process while only the larger 30g standards contained enough material to pass through the Pt-Pd-Au fire assay and ICP-AES finish. These occurred on sample tag numbers ending in 11, 36, 61, and 86.

GSC Standard (Till-1): 3g of material was inserted every 25th sample and every 100th sample contained 30g of material. All samples were be analyzed by the ME-ICP41 process while only the larger 30g standards contained enough material to pass through the Pt-Pd-Au fire assay and ICP-AES finish. These occurred on sample tag numbers ending in 5, 30, 55, 80 and 100.

Duplicates: Duplicates were collected from within two metres of the original sample location every 25th sample. These occurred on sample tag numbers ending in 2, 27, 52, and 77.

Field Standard: Field standards were collected from two suitable locations from the central and eastern portions of the Wellgreen Grid. Material was dried, sieved to fines, hand-mixed, and selected using the 'Method of Dips'. 100g of field standard was inserted every 25th sample. These occurred on sample tag numbers ending in 10, 35, 60 and 85. The field standard collection process was photographed.

11.2 Density Determinations

A total of 6,705 specific gravity measurements were made using the water immersion method on core samples from the 1987 and 2013 drill programs. Specific gravity measurements during the 2012 field season were done at ALS using a picnometer.

11.3 Metallurgical Sampling

Select intervals from drilling in a number of programs beginning in the 1980s and 2000s have been selected for use in metallurgical test work which is on-going (See Section 13).

11.4 Sample Preparation and Analysis

11.4.1 Historic Programs 1952-1988

Hudson Yukon Mining assayed all core at their internal lab in Flin Flon, Manitoba, and Archer-Cathro assayed all core at Bondar-Clegg & Company Ltd. in North Vancouver. No sample preparation details are available from the Hudson Yukon Mining documentation, however the Archer-Cathro core was analyzed for Pt and Pd by fire assay, and Cu and Ni by atomic absorption (AAS). In addition, some samples were analyzed for the other PGEs and as such underwent neutron activation.

While no documentation exists for how samples were prepared from the historic and the more recent programs (conducted from 1996-2005), it was assumed that sample preparation methods at the various laboratories are generally consistent with current industry best practices since reputable firms were utilized.

11.4.2 Northern Platinum 1996-2010 Programs

Most samples, including field-inserted Standards and Blanks, were sent to Loring Laboratories in Calgary, AB for assaying. In 2009 samples were also analyzed at ALS Global in North Vancouver, BC. Loring Laboratories has ISO 9001:2000 certification and ALS Global has ISO/IEC 17025:2005 and ISO 9001:2000 certification.

A 30 element package, including copper, nickel, and cobalt reported in parts per million was analyzed by aqua regia "partial digestion" followed by ICP analyses. Gold, platinum, palladium and rhodium were analyzed by four acid digestion followed by a 30 g fire assay with an atomic absorption (AA) finish.

11.4.3 Wellgreen Platinum Programs 2011-2013

All samples collected in 2011 and 2012, including field-inserted Standards and Blanks, were sent to ALS Global in Vancouver, BC, for assaying. All samples in 2013 were sent to ACME Laboratories in Vancouver, BC, for analysis. Both labs have ISO/IEC 17025:2005 and ISO

9001:2000 certification, and are independent of Wellgreen Platinum. The samples were assayed for copper, nickel, cobalt, gold, platinum, and palladium.

The following is a brief description of the sample preparation:

- 1. Samples are sorted into numerical order and then dried.
- 2. Once dried, the material was crushed using a jaw crusher.
- 3. The sample is then split to get a 250 g sample for pulverizing.
- 4. The total 250 g of split sample is pulverized to 85% passing 75 micrometres (µm).

Gold, platinum, palladium were assayed by fire assay fusion of 30 grams (g) with an ICP finish. The resulting values were reported in parts per million.

Copper, nickel, and cobalt were assayed by four-acid "near total" digestion AAS. If any of the assays returned values above the detection limits, the sample was re-assayed using a similar method (ICP-AES or AAS).

11.5 Quality Assurance and Quality Control

QA/QC on Hudson, Kluane and Northern Platinum drilling programs is not documented but was believed to conform to industry standards at the time. This would have consisted solely of internal laboratory standards, blanks and duplicates.

In drilling and re-assaying programs carried out between 2006 and 2010 (by Coronation Minerals and Northern Platinum) blanks, Standard Reference Material (SRM), and duplicates were inserted into the sample stream approximately every 20th sample.

11.5.1 Standards

Eight standard reference materials (SRMs) have been used since 2006 to monitor laboratory performance. Six of these are site specific SRMs collected from the Wellgreen property and were prepared by CANMET Mining and Mineral Sciences Laboratory in Ottawa as part of the Canadian Certified Reference Material Project (CCRMP). Two of the standards were purchased from Ore Research and Exploration Pty. Ltd. (OREAS) and were sourced from the West Musgrave region of Western Australia. All SRMs had certified values for Pt and Pd and most were certified for Au, Cu and Ni. Only 2 SRMs had certified values for Co. Where certified values were not present, provisional values were supplied. The SRMs and reference values are shown in Table 11-1.

SRM Code	Source	Programs	Au ppm	Pt ppm	Pd ppm	Cu %	Co %	Ni %	
OREAS 13P	WA 2004	2006,2008	0.047	0.047	0.070	0.250	0.009	0.226	
OREAS 14P	WA 2003	2006	0.051	0.099	0.150	0.997	0.075	2.090	
WMG-1	Site 1994	2006-10	0.110	0.731	0.382	0.590	0.020	0.270	
WPR-1	Site 1994	2006-12	0.042	0.285	0.235	0.164	0.018	0.290	
WGB-1	Site 1997	2006-13	0.003	0.006	0.014	0.011	0.003	0.008	
WMS-1a	Site 2007	2008-12 (88 re)	0.300	1.910	1.450	1.396	0.145	3.020	
WMG-1a	Site 2011	2012 (87-88 re)	0.062	0.899	0.484	0.712	0.019	0.248	
WPR-1a	Site 2012	2013 (88 re)	0.050	0.452	0.614	0.299	0.021	0.439	
				= Provisional (not certified value)					

 Table 11-1 Standard Reference Materials

Standards performed within acceptable limits. Gold showed the most variability but this is not considered unusual at this low level of concentration. Examples of the control charts are presented in Figure 11-1 to Figure 11-6.

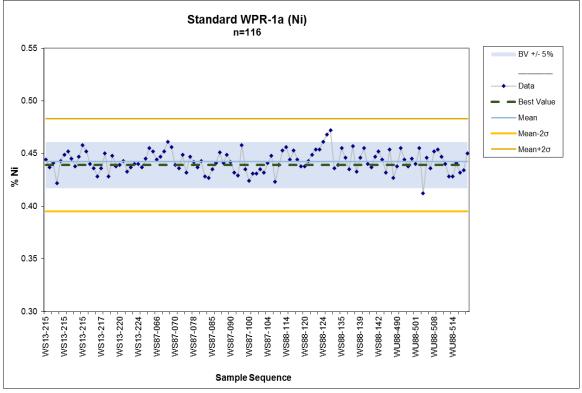


Figure 11-1 Standard Control Chart WPR-1a for Ni

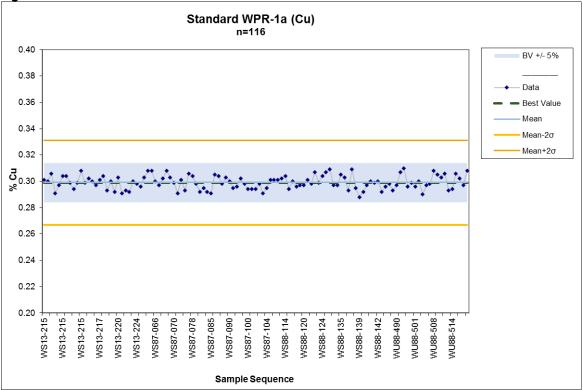
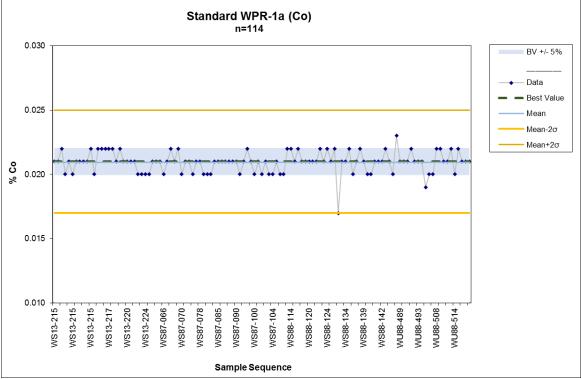



Figure 11-2 Standard Control Chart WPR-1a for Cu

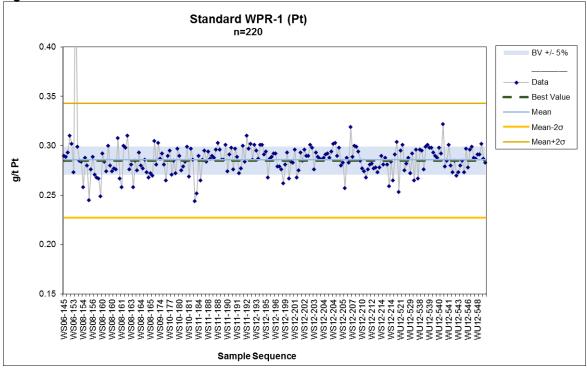
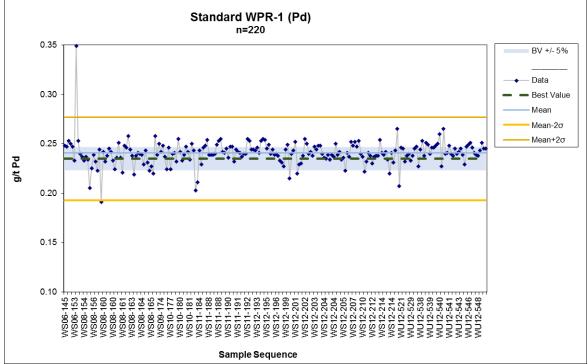



Figure 11-4 Standard Control Chart WPR-1 for Pt

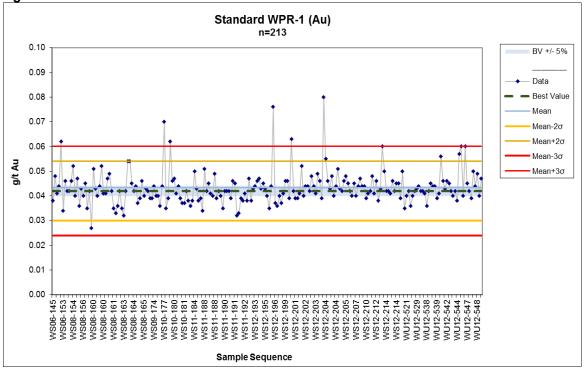
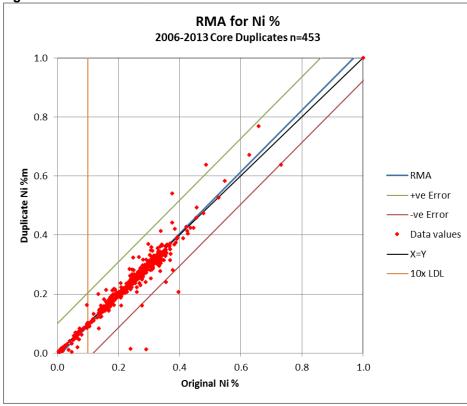


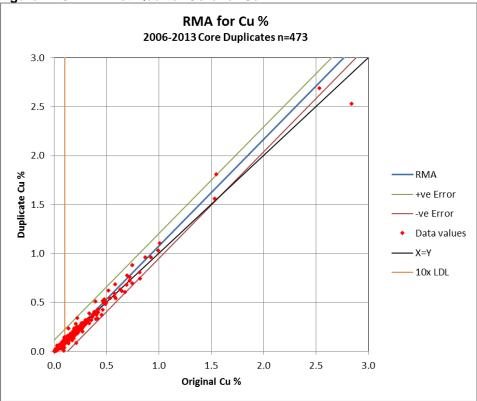
Figure 11-6 Standard Control Chart WPR-1 for Au

Standard WGB-1 is described as 'Gabbro Rock PGE Reference Material' but due to very low levels of base and precious metals it would be more suitable as a blank. It is recommended that the use of this SRM be discontinued.


11.5.2 Blanks

Blank samples were used to check for contamination during sample preparation. The material was obtained from two sources: granodiorite from a nearby road quarry, and garden marble from hardware stores in Whitehorse, Yukon. A blank sample was normally inserted into the sample stream after the SRM or immediately following a massive sulphide interval. A total of 731 blanks were inserted in the sampling process and analyzed between 2006 and 2013. Blank failures were checked to ensure that they did not appear immediately after higher grade samples. No significant contamination was indicated.

11.5.3 Duplicates


A quarter core duplicate sample was taken approximately every 20th sample up to August, 2012 for a total of 625. Since that time, 81 coarse rejects have been used as duplicate checks. Pulp duplicates were also available from the 1987-88 re-sampling program and the 2013 program. A total of 130 pulp duplicates for Ni and Cu returned above detection values.

Scatter plots for the quarter core duplicates with reduced major axis (RMA) are shown in Figure 11-7 to Figure 11-12. Statistics are shown in Table 11-2. The slopes of the RMA lines show no significant bias with less than 1% for Ni, Cu, Co, and Pd and less than 2% for Pt and Au.

Figure 11-7 RMA Plot Quarter Core for Ni

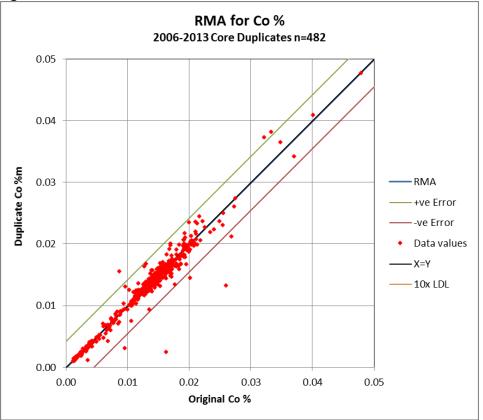
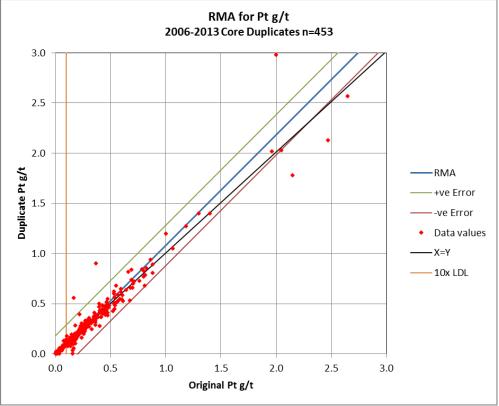



Figure 11-9 RMA Plot Quarter Core for Co

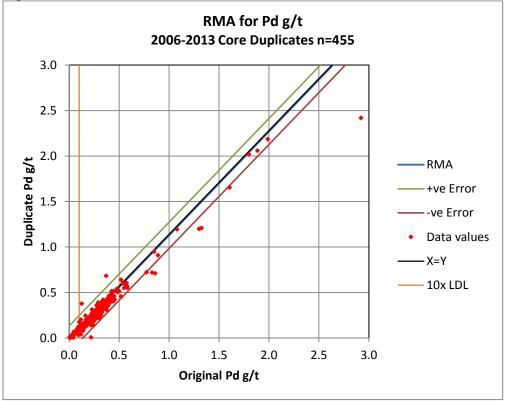
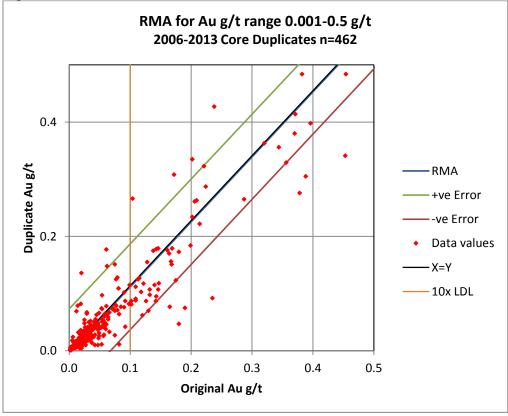
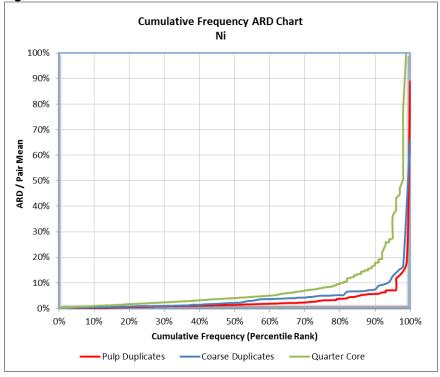



Figure 11-12 RMA Plot Quarter Core for Au

Element	Count	Mean Orig	Mean check	Bias	CV _{AVR} %	Int	Slope	Srma	95% CI	R²
Ni	453	0.261	0.260	0.22%	14.22	-0.012	1.046	0.057	0.111	0.981
Cu	473	0.171	0.172	-0.81%	13.83	-0.014	1.090	0.065	0.127	0.976
Co	482	0.015	0.015	0.79%	8.96	0.000	0.998	0.002	0.004	0.984
Pt	482	0.277	0.282	-1.65%	18.60	-0.022	1.096	0.102	0.200	0.982
Pd	455	0.247	0.249	-0.81%	15.47	-0.012	1.056	0.074	0.145	0.970
Au *	455	0.047	0.048	-1.72%	26.89	-0.002	1.061	0.038	0.075	0.865

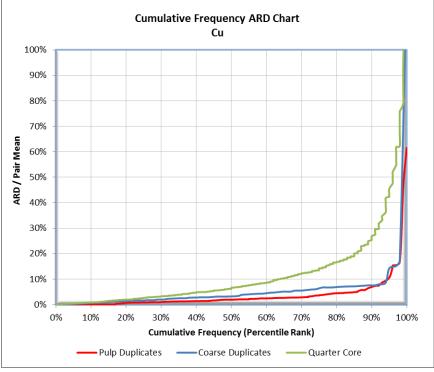
 Table 11-2 Quarter Core Duplicate Performance from RMA plots

* Au range from 0.001 - 0.50 g/t


The coefficient of variation $CV_{AVR}(\%)$ is a common standard by which to assess the performance of duplicates in geochemical datasets with n>500 (Stanley and Lawie, 2007).

The calculation for $CV_{AVR}(\%)$ is:

$$CV_{AVR}$$
 (%) = 100 × $\sqrt{\frac{2}{N} \sum_{i=1}^{N} \left(\frac{(a_i - b_i)^2}{(a_i + b_i)^2} \right)}$


Only the quarter core data fits the large population criteria. For field duplicates the acceptable CV_{AVR} limit is 30%. The values for Ni, Cu, and Co were less than half of this level. Pt and Pd showed acceptable performance at 18.6 and 15.47% respectively. Au approached the limit at 27.07% indicating more variability attributed to the large number of assays near the detection limit.

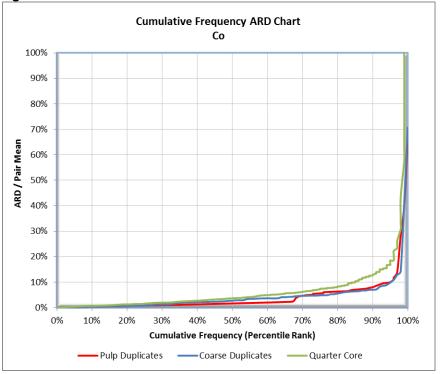
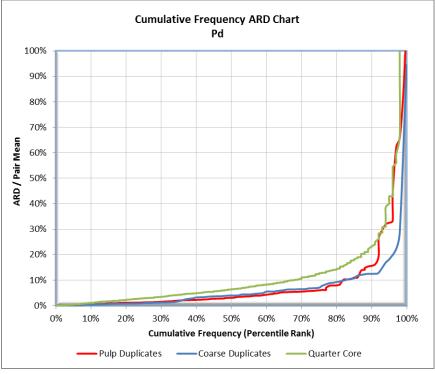

Absolute relative difference (ARD) charts were also generated to compare the duplicate results for the various elements. Generally recommended thresholds are less than 10% ARD at the 90% cumulative frequency limit for pulps, less than 20% for coarse rejects and less than 30% for core or field duplicates. Ni, Cu, and Co are all within these thresholds as displayed in Figure 11-13 to Figure 11-15. Pd at 15% ARD for pulps at the 20% cumulative frequency threshold is marginally high while Pt shows more variability with an ARD around 25% at this level (Figure 11-16 and Figure 11-17). Results for Au show the highest variability due to the large number of assays close to detection limit (Figure 11-18). The coarse reject results are often close to the pulp results and are likely due to significantly fewer samples in the populations plotted and variability at higher grade levels.

Figure 11-13 ARD Chart for Ni


Figure 11-14 ARD Chart for Cu

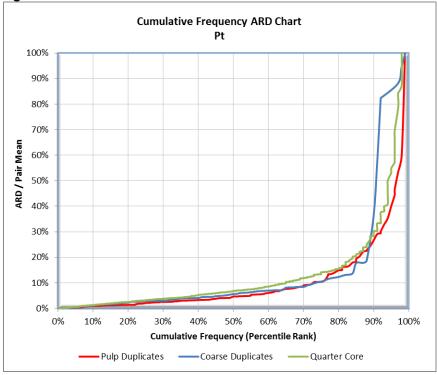


Figure 11-15 ARD Chart for Co

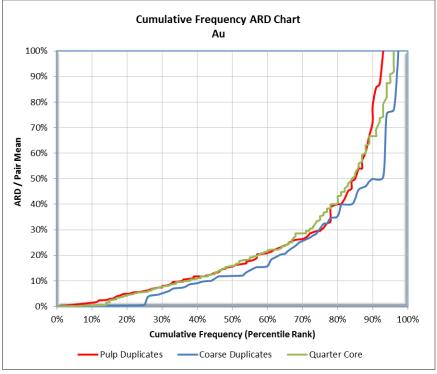

Figure 11-16 ARD Chart for Pd

Figure 11-17 ARD Chart for Pt

Figure 11-18 ARD Chart for Au

11.6 Databases

A centralized MS-Access database is maintained in the Wellgreen Platinum corporate office.

11.7 Sample Security

The security measures for drill programs carried out prior to 2009 are undocumented but are believed to have conformed to industry best practices at the time. In 2009-2010, after the sample bags were sealed, company personnel would transport them to the Northern Platinum geological office. The samples were stored there and only the geologist and camp manager had access. When enough samples had accumulated, company personnel would pack them in plastic containers, label them, and take the containers to the shipper (Air North) in Whitehorse. From 2011-2013, the rice bags full of samples were temporarily stored in the core shack located in the lower camp and shipped approximately once per week to Whitehorse.

11.8 Opinion on Adequacy

GeoSim is of the opinion that the adequacy of sample preparation, security and analytical procedures are sufficiently reliable to support the mineral resource estimation and that sample preparation, analysis, and security are generally performed in accordance with exploration best practices at the time of collection.

12 DATA VERIFICATION

12.1 Site Visit Validation

Ronald G. Simpson of GeoSim visited the site on September 17, 2013. The purpose of the visit was to review the drilling, sampling, and QA/QC procedures. The geology and mineralization encountered in the drill holes completed to date were also reviewed. During the site visit Mr. Simpson verified:

- Collar locations are reasonably accurate by comparing several drill hole database collar locations with hand-held GPS readings.
- Drill hole collars are clearly marked with sturdy wooden fence posts, and the drill hole identity, orientation, and depth are inscribed onto a metal tag or a concrete slab (Figure 12-1)
- Down-holes surveys for surface holes are routinely taken at 15 to 25 metre intervals using a Reflex single-shot unit.
- Drill logs compare well with observed core intervals.
- Core recoveries were generally high through the mineralized zones
- Specific gravity is determined using a water immersion method where the weight of the sample in air and in water is measured with an electronic scale.
- Mr. Simpson did not collect independent samples as the property had a record of metal production. Sulphide mineralization observed in drill core was consistent with reported base metal grades.

Figure 12-1 Drill Hole Collar Markers

12.2 Database Verification

Drill data are typically verified prior to mineral resource estimation by comparing data in the Project database to data in original sources. For most of the data, the original sources are electronic data files; therefore, the majority of the comparisons were performed using software tools.

Un-sampled intervals were identified and entered into the database and assay fields flagged with '-1' to identify them as missing.

GeoSim examined the sample database for location accuracy, down hole survey errors, typographical errors, interval errors and missing sample intervals. Several issues were identified and corrected prior to mineral resource estimation.

12.3 Data Adequacy

Based on the site visit observations, GeoSim concludes that drilling, logging, and sampling of drill core during the exploration programs carried out by Wellgreen Platinum and previous operators have been conducted in a manner appropriate to the style of mineralization present on the property.

The process of data verification performed by GeoSim indicates that the data collected by Wellgreen Platinum and previous operators from the Project adequately reflect deposit dimensions, true widths of mineralization, and the style of the deposits, and adequately support the geological interpretations for the purpose of this Technical Report. GeoSim is of the opinion that the analytical and database quality are adequate for the purposes of this Technical Report.

QA/QC with respect to the results received to date for the 2006 through 2013 exploration programs and re-assaying of core from the 1987/88 programs is acceptable, and protocols have been reasonably well documented.

Legacy data collected prior to 2006, with the exception of re-assayed core from 1987-88, is not considered to be sufficiently reliable on its own to support a measured or indicated mineral resource classification.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

On September 3, 2014, Wellgreen Platinum announced the results of its recent metallurgical testing and the comprehensive review and assessment of earlier metallurgical test programs from its Wellgreen PGM-Ni-Cu project, located in the Yukon Territory, Canada. Studies in 2013 and 2014 were completed by SGS Lakefield Research Limited (SGS) and XPS Consulting & Test work Services (XPS), a unit of GlencoreXstrata, along with previous studies undertaken by SGS and G&T Metallurgical Services Ltd (G&T), testing included batch and locked-cycle testing on 195 drill core samples from across the main Wellgreen resource area. Key findings are as follows:

- Metallurgical testwork shows improved recoveries for all major metals using conventional flotation in each metallurgical domain, versus assumptions in the 2012 Preliminary Economic Assessment, with recoveries significantly increased by 35% for platinum and 13% for nickel.
- Results indicate production of a high value bulk nickel-copper-PGM concentrate with grades of 6-10% nickel and 8-12% copper with 11-14 g/t 3E (platinum, palladium and gold) plus an additional 1-4 g/t of rare PGMs (rhodium, iridium, osmium and ruthenium).
- Improved conventional flotation metal recovery was attained by:
 - Recognition of three major geologic and metallurgical domains;
 - Optimization of grind size, reagent selection, pH and conditioning time by domain; and
 - Use of a magnetic separation process with re-grinding of magnetic material for some domains.
- Testing included bulk flotation processes, sequential flotation and bulk separation to produce individual high quality nickel and copper concentrates, which will be assessed further in the future.
- Additional secondary recovery processes have also been identified which could increase extraction of the unrecovered PGM material.

The metallurgical test programs were designed to increase confidence in the metal recovery process for the Wellgreen mineralization. Based on the new test results and the comprehensive review of previous metallurgical test programs on the Wellgreen project, the Company anticipates that the proposed conventional sulphide flotation process will result in improvement in the overall average recovery for all major metals as compared to the 2012 PEA, particularly for the platinum group metals and nickel. This analysis was based on 183 batch samples and 12 locked-cycle tests (LCTs) for the three major metallurgical domains – Gabbro / Massive Sulphides, Clinopyroxenite / Pyroxenite, and Peridotite - that investigated bulk concentrates, sequential flotation, bulk concentrate separation and magnetic separation processes, some of which produced separate nickel and copper concentrates. Results are summarized in Table 13-1.

Geological Domain	Recovery to Bulk Concentrate %							
	Ni	Cu	Со	Pt	Pd	Au		
Gabbro / Massive Sulphides	83%	95%	68%	75%	81%	70%		
Clinopyroxenite/Pyroxenite	75%	88%	64%	59%	73%	66%		
Peridotite	68%	66%	55%	58%	58%	59%		

 Table 13-1 Estimated Metal Recoveries By Geologic Domain

Recoveries shown for the three domains are normalized to a bulk concentrate grade containing 6% nickel

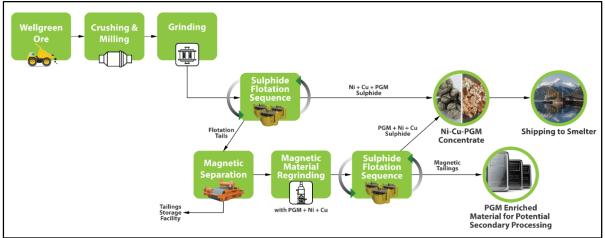
Future mine modelling will focus on the extraction of the higher grade, Gabbro/Massive Sulphides and Clinopyroxenite/Pyroxenite domains with Peridotite material being stockpiled for future processing. On this basis, the initial years of the Life of Mine Plan concentrates produced are anticipated to grade 6-10% nickel with 8-12% copper and 11-14 g/t 3E (platinum, palladium, and gold) plus an additional 1-4 g/t of rare PGMs rhodium, iridium, osmium and ruthenium (these exotic PGMs were also reported in historical production records). The blended recovery for these two main domains is estimated to be approximately 77% Ni, 89% Cu, 64% Co, 62% Pt, 75% Pd, 67% Au, and 70% Ag (Table 13-2).

 Table 13-2 Estimated Concentrate Grades and Blended Recoveries in Primary Target Geologic

 Domains

Concentrate Grades	Nickel		Copper		PGMs+Au		Exotic PGMs	
Concentrate Grades	6-10%		8-12%		11-14g/t		+1-4g/t	
2014 Blended Recoveries*	Ni	Cı	r	Со	Pt	P	d	Au
2014 Bielided Recoveries	77%	899	%	64%	62%	75	%	67%
2012 PEA Recoveries	68%	889	%	64%	46%	73	%	59%

*Gabbro/Massive Sulphides and Clinopyroxenite/Pyroxenite domains


13.1 Metallurgical Testing Details

Laboratory scale testing in 2013 and 2014 was performed by SGS and XPS under the supervision of the Company's independent metallurgical Qualified Person, John Eggert, P.Eng., of Eggert Engineering Inc. with review and consultation by Dr. David Dreisinger of the University of British Columbia. The metallurgical test programs were designed to refine the process flowsheet and to improve recovery levels, particularly for the PGMs that are contained within saleable concentrates. These test programs evaluated the effect of factors such as grind size, pH, conditioning, the use of various collectors, flotation reagents, dispersants and depressants on mineral recoveries and concentrate grades, magnetic separation and modifications to the mineral processing flowsheet.

One of the key observations from this assessment was that the optimization of sulphide flotation recovery varied based on the three major geological domains. In general, the recovery of economic metals is highest from the Gabbro/Massive Sulphides domain, followed by the Clinopyroxenite/Pyroxenite and then by the Peridotite. Testing has shown that the material from each domain can be processed in the same circuit with variances related to grind size, conditioning time, pH and the use of magnetic separation with the majority of reagent selection applied across all the domains.

With recognition that a sizeable amount of the PGMs, particularly platinum, was not being captured in the sulphide flotation process because it was finer-grained and associated with the magnetic minerals magnetite and pyrrhotite, the Wellgreen team and its metallurgical consultants conducted subsequent testing to evaluate the benefit of adding a magnetic separation process to the flowsheet. Magnetic separation is a proven technology utilized in many operating Ni-PGM mines. The magnetic separation process was successful in capturing additional PGMs, nickel and copper through regrinding of a modest volume of magnetic material followed by conventional flotation, particularly in the Clinopyroxenite/Pyroxenite and Peridotite domains. This material is then combined with the main sulphide concentrate thus improving overall primary flotation recoveries. In addition, the remaining magnetic material may be amenable to additional secondary processing,

potentially adding to the recovery of conventional flotation (see flowsheet in Figure 13-1 below).

As a result of the improved understanding of sulphide flotation on the different domains, the Company conducted additional test work on the lower grade Peridotite domain which had historically seen much less testing. These tests confirmed that increased recovery can be achieved in Peridotite following the same general process flowsheet with the use of flocculants, magnetic separation and a slightly finer grind size than the other two domains.

The recovery level estimates for the metals in each of the three metallurgical domains are based on recovery versus concentrate grade curves selected from the extensive batch tests and locked cycle tests for each domain completed on the project to date. As noted in Table 13-1, the highest recoveries are in the Gabbro/Massive Sulphides domain with very good recoveries also attained in the Clinopyroxenites/Pyroxenites and Peridotites. In addition, testing showed that recoveries were generally higher for locked cycle tests than the majority of batch tests due to the recycling of the process material, which simulates the actual process flowsheet from a mine.

Bench scale testing and locked cycle tests for Wellgreen demonstrate that conventional sulphide flotation methods can be used to produce a high-value bulk Ni-Cu-PGM concentrate. These mineral concentrates contain pentlandite as the main nickel mineral, chalcopyrite as the main copper mineral, along with the PGMs and gold included in the minerals sperrylite, merenskyite, sudburyite, and lesser known minerals. Testwork has also demonstrated the possibility of producing high value separate Ni-PGM and Cu-PGM concentrates.

13.2 Future Metallurgical Test Work

The Company expects to carry out more detailed metallurgical testing in order to further refine the process flowsheet, evaluate recoveries based on the sequencing of material from the mine modelling process, quantify contributions from the rare PGMs and evaluate secondary processing options that may further improve PGM and base metal recoveries as part of Pre-feasibility level studies.

14 MINERAL RESOURCE ESTIMATE

14.1 Summary

This mineral resource estimate is an update to those previously prepared for the Wellgreen Project (Carter et al, 2012). The mineral resource estimate was prepared using Geovia-Surpac© v6.5 software by Ronald G. Simpson of GeoSim. Table 14-1 presents the mineral resource estimate for the Wellgreen Project at a base case cut-off grade of 0.15% Ni Equivalent (or 0.57 g/t Pt Equivalent).

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	92,293	0.260	0.155	0.015	0.252	0.246	0.052	0.550	0.449	1.713
Indicated	237,276	0.261	0.135	0.015	0.231	0.238	0.042	0.511	0.434	1.656
Total M&I	329,569	0.261	0.141	0.015	0.237	0.240	0.045	0.522	0.438	1.672
Inferred	846,389	0.237	0.139	0.015	0.234	0.226	0.047	0.507	0.412	1.571

Notes:

1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.

 Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x 100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.

3. Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have not been adjusted to reflect metallurgical recoveries.

4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).

5. Totals may not sum due to rounding.

6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

NiEq% = Ni%+ Cu% x 3.00/8.35 + Co% x 13.00/8.35 + Pt [g/t]/31.103 x 1,500/8.35/22.04 + Pd [g/t]/31.103 x 750/8.35/22.04 + Au [g/t]/31.103 x 1,250/8.35/22.04

In addition, Table 14-2 below shows the higher grade portion of the resource within the constrained pit at a 1.9 g/t Pt Eq. or 0.50% Ni Eq. cut-off.

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	21,854	0.326	0.301	0.019	0.454	0.366	0.103	0.923	0.653	2.492
Indicated	50,264	0.334	0.286	0.019	0.455	0.373	0.090	0.919	0.653	2.493
Total M&I	72,117	0.332	0.291	0.019	0.455	0.371	0.094	0.920	0.653	2.493
Inferred	173,684	0.309	0.301	0.018	0.456	0.352	0.098	0.906	0.631	2.410

Table 14-2 Mineral Resource at a 0.50% NiEq cut-off

Notes:

1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.

 Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x 100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.

3. Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have

not been adjusted to reflect metallurgical recoveries.

- 4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).
- 5. Totals may not sum due to rounding.
- 6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

14.2 Key Assumptions/Basis of Estimate

The sample database supplied for the Wellgreen Project contains results from 776 surface and underground drill holes completed on the property since 1952 (Table 14-3). Four holes drilled in 2005 were not sampled and lay outside of the present resource limits.

Year	Operator	Surfa	ce Driling		rground illing	Combined Drilling		
	-	Holes	Metres	Holes	Metres	Holes	Metres	
1952	Yukon Mining	18	1,981.64			18	1,981.64	
1953	Yukon Mining	27	2,499.67	27	692.57	54	3,192.24	
1954	Yukon Mining	2	192.63	159	3,939.65	161	4,132.28	
1955	Hudson Yukon Mining			154	9,019.37	154	9,019.37	
1956	Hudson Yukon Mining			38	1,903.70	38	1,903.70	
1969	Hudson Yukon Mining	13	1,314.30			13	1,314.30	
1971	Hudson Yukon Mining			80	2,482.83	80	2,482.83	
1972	Hudson Yukon Mining			23	990.26	23	990.26	
1987	All North / Galactic Resources	46	5,027.19			46	5,027.19	
1988	All North / Chevron	37	6,049.66	34	5,571.20	71	11,620.86	
2001	Northern Platinum	6	530.04			6	530.04	
2006	Coronation Minerals	11	2,016.87			11	2,016.87	
2007	Coronation Minerals			3	576.99	3	576.99	
2008	Coronation Minerals	13	4,654.62			13	4,654.62	
2009	Northern Platinum	10	2,051.75			10	2,051.75	
2010	Northern Platinum	7	2,254.77			7	2,254.77	
2011	Wellgreen Platinum	6	1,925.12			6	1,925.12	
2012	Wellgreen Platinum	22	5,566.20	29	5,416.91	51	10,983.11	
2013	Wellgreen Platinum	11	2,240.36			11	2,240.36	
	Totals	229	38,304.82	547	30,593.48	776	68,898.30	

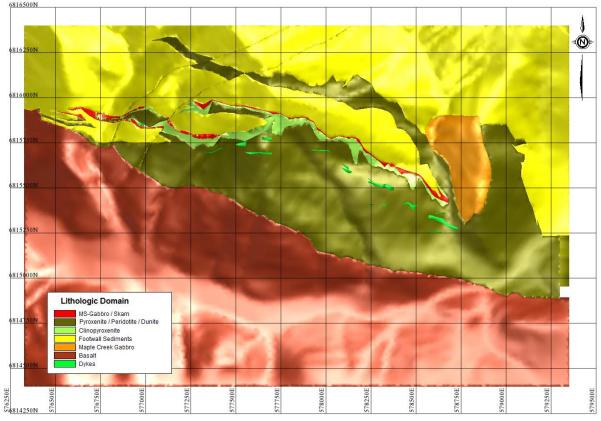
Table 14-3 Drilling Summary

Prior to 2006, drill core was selectively sampled in areas considered to have economic potential based on visual logging. Wellgreen assayed non-sampled intervals from the 1987-88 drill programs in 2013 and re-assayed intervals that had been previously analyzed.

14.3 Geological Models

Lithologic wireframe models were created by Wellgreen Platinum geologic staff based on sectional geology interpretations (Figure 14-1). Model blocks that were within the respective wireframes were assigned integer codes as presented in Table 14-4.

For the resource modeling, the dunite, peridotite, pyroxenite and clinopyroxenite were treated as a single domain collectively referred to as 'Peridotite'. The sub-domains were created subsequent to grade estimation based on largely on grade distribution and distance to the footwall contact. It was not possible to differentiate these sub-domains based on


visual logging but they were deemed necessary for differentiation of metallurgical recoveries.

Grade estimation was confined to the Peridotite complex (including dunite, pyroxenite, and clinopyroxenite) and the MS-Gabbro domains. The extent of the MS-Gabbro (MS-Gb) domain along the Peridotite and footwall sediment contacts is illustrated in Figure 14-2 and Figure 14-3.

Lithologic Domain	Model Code
Overburden	99
MS-Gabbro / Skarn	101
Far West Gabbro	110
Clinopyroxenite	150
Pyroxenite	201
Far West Peridotite	202
Peridotite	205
Dunite	251
Footwall Sediments	301
Mixed Gabbro/Sediments	302
Maple Creek Gabbro	401
Basalt	501
Dykes	701
Xenoliths	801
Undefined	601

Table 14-4 Lithologic Domain Coding

Figure 14-1 Plan View of Lithologic Domains

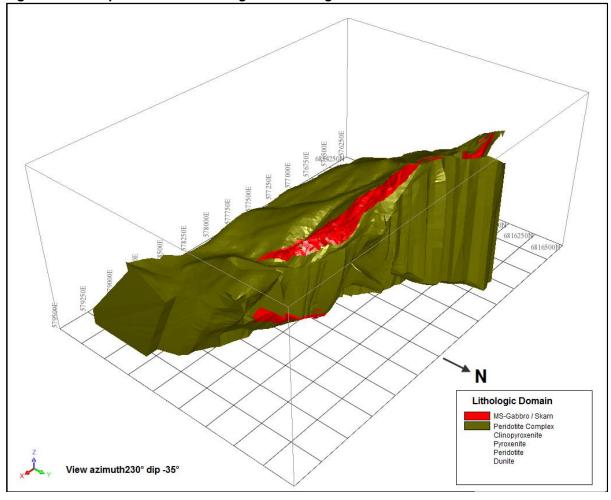


Figure 14-2 Perspective View showing MS-Gb along Peridotite Contacts

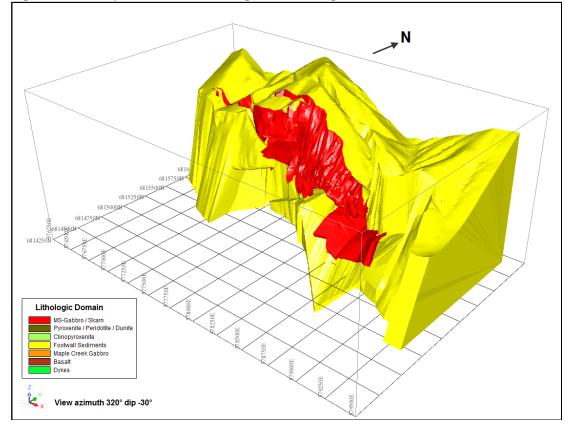


Figure 14-3 Perspective View showing MS-Gb along Footwall Sediment Contacts

14.4 Exploratory Data Analysis

Nominal sample lengths varied from 1.2 to 3.05 metres (4 to 10 feet) for the various drill programs. It was decided to composite all data to 3 metre intervals prior to statistical analysis. Only 2.5% of the sampled intervals exceeded 3.05 metres in length.

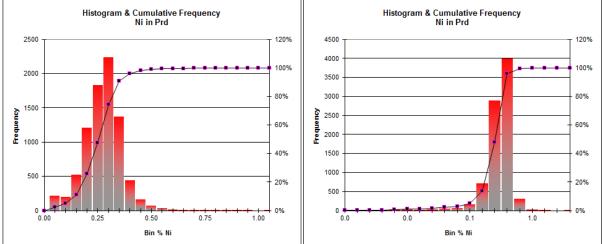
Composite statistics were generated within the MS-Gabbro and the combined Dunite/ Peridotite/Pyroxenite/Clinopyroxenite domains. The average grades using the pre-1987 legacy data were considerably higher than the post-1987 data due to selective sampling of higher grade intervals. In the MS-Gabbro domain, all average grades are significantly higher in the selective sampling data due to the presence of massive sulphide bodies which were tightly constrained. The statistics for the uncapped composites are presented in Table 14-5 to Table 14-8. Cumulative frequency distributions for Ni and Cu by domain are illustrated in Figure 14-4 to Figure 14-7.

	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t					
n	647	455	161	81	97	15					
Min	0.010	0.045	0.002	0.103	0.069	0.137					
Max	1.755	2.019	0.170	2.057	1.303	6.857					
Median	0.276	0.158	0.015	0.358	0.343	0.343					
Mean	0.310	0.248	0.021	0.471	0.450	1.333					
Variance	0.044	0.052	0.000	0.109	0.074	5.144					
Std Dev	0.209	0.229	0.021	0.330	0.271	2.268					
CV	0.67	0.92	0.99	0.70	0.60	1.70					

Table 14-5 Composite Statistics Pre-1987 Data - Peridotite Domain

	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t					
n	8358	8354	8212	8336	8357	8199					
Min	0.001	0.000	0.001	0.001	0.001	0.001					
Max	2.566	3.375	0.104	4.780	2.637	1.500					
Median	0.255	0.100	0.015	0.181	0.219	0.025					
Mean	0.252	0.138	0.015	0.232	0.231	0.046					
Variance	0.010	0.023	0.000	0.041	0.019	0.005					
Std Dev	0.099	0.150	0.004	0.203	0.137	0.070					
CV	0.39	1.09	0.29	0.88	0.59	1.52					

Table 14-6 Composite Statistics 1987-2013 Data - Peridotite Domain


Table 14-7 Composite Statistics pre-1987 Data- MS-Gabbro Domain

	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t
n	839	829	443	497	493	170
Min	0.010	0.016	0.006	0.137	0.103	0.062
Мах	5.732	4.440	0.670	9.600	10.971	5.143
Median	0.520	0.780	0.065	1.078	0.756	0.410
Mean	1.018	0.912	0.079	1.374	1.096	0.620
Variance	1.353	0.434	0.005	1.177	1.397	0.343
Std Dev	1.163	0.659	0.067	1.085	1.182	0.586
CV	1.14	0.72	0.85	0.79	1.08	0.95

Table 14-8 Composite Statistics 1987-2013 Data - MS-Gabbro Domain

	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t
n	1516	1516	1497	1499	1515	1461
Min	0.001	0.001	0.000	0.002	0.001	0.001
Max	5.147	4.195	0.275	4.155	3.578	3.748
Median	0.187	0.280	0.013	0.345	0.239	0.050
Mean	0.272	0.381	0.017	0.454	0.300	0.098
Variance	0.140	0.159	0.000	0.226	0.103	0.027
Std Dev	0.374	0.398	0.020	0.475	0.321	0.166
CV	1.37	1.05	1.16	1.05	1.07	1.69

Figure 14-4 Frequency Distribution of Ni in Peridotite (Prd)

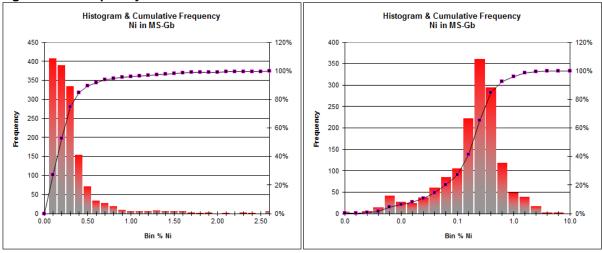
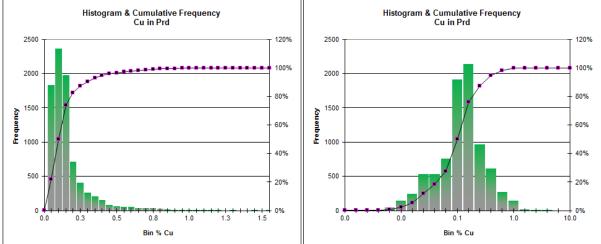
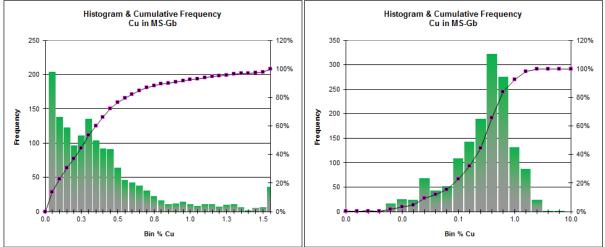




Figure 14-5 Frequency Distribution of Ni in MS-Gabbro

14.5 Density Assignment

The project database contains a total of 6,705 density measurements made on core samples from the 1987 through 2013 drill programs.

Model blocks were assigned the mean density value for the corresponding lithology as shown in Table 14-9.

Lithologic Domain	Model Code	Density	No. Measurements
Overburden	99	2.10	0
MS-Gabbro / Skarn	101	3.06	622
Far West Gabbro	110	2.89	130
Clinopyroxenite	150	2.95	903
Pyroxenite	201	2.82	3243
Far West Peridotite	202	2.98	44
Low Grade Peridotite	205	2.75	385
Dunite	251	2.72	21
Footwall Sediments	301	2.76	1092
Mixed Gabbro/Sediments	302	2.76	0
Maple Creek Gabbro	401	2.80	0
Basalt	501	2.77	63
Dykes	701	3.03	81
Xenoliths	801	2.76	0
Undefined	601	2.75	0

Table 14-9 Density Assignments

14.6 Grade Capping/Outlier Restrictions

Grade distribution in the composited data was examined to determine if grade capping or special treatment of high outliers was warranted. Cumulative log probability plots were examined for outlier populations separately in the Peridotite/Clinopyroxenite and MS-Gabbro domains. Only recent data from the post 1987 drilling was used in this study to eliminate the bias inherent in selective sampling from legacy data.

It was concluded that outliers above selected thresholds should be given a limited range of influence. The levels selected are shown in Table 14-10. Cumulative log probability plot (CPP) charts are illustrated in Figure 14-8 and Figure 14-9. There were very few outliers overall as indicated by the relative percent of composites above the threshold levels.

		MS-Gb	Pre	d/Clpx
Domain	Cap Grade	% of Composites above Cap	Cap Grade	% of Composites above cap
Ni %	2.0	0.91%	1.0	0.11%
Cu %	2.2	0.82%	1.5	0.07%
Co %	0.2	0.17%	0.045	0.13%
Pt g/t	2.1	1.33%	2.0	0.06%
Pd g/t	1.5	0.99%	1.2	0.04%
Au g/t	0.7	1.01%	0.55	0.21%

Table 14-10 Outlier Restrictions

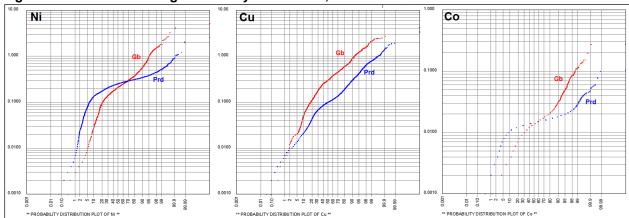
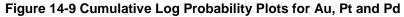
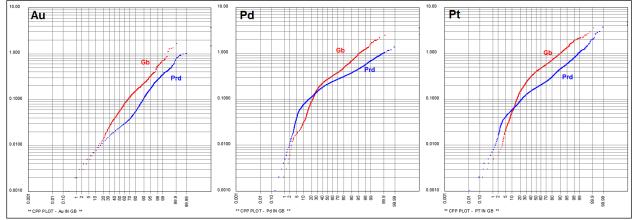




Figure 14-8 Cumulative Log Probability Plots for Ni, Cu and Co

14.7 Compositing

Downhole composites for Ni, Cu, Co, Pt, Pd, Au, and sulphur were created within the individual domains using the 'best fit' method. This procedure produces samples of variable length, but of equal length within a contiguous drill hole zone, ensuring the composite length is as close as possible to the nominated composite length. In this case, the nominated length was set at 3 metres.

Diluted composites from pre 1987 drilling were generated within the MS-Gabbro domain by assigning values for non-sampled intervals a 0 grade for Ni and Cu. Other elements were evaluated on a hole-by-hole basis to decide whether it was necessary to dilute missing or non-sampled data. If a hole contained some analytical data for other elements then non-sampled intervals were set to a 0 grade, otherwise they were ignored. All gold values were removed from the pre-1987 data as they were highly selective.

14.8 Variography

14.8.1 MS-Gabbro Domain

The MS-Gabbro domain is a narrow zone along the footwall contact with the sediments containing pods of massive sulphides with high grades. As the orientation of the contact is not consistent it was not possible to model reliable directional variograms in all areas and it

was decided to use the zone geometry to develop search ellipsoid orientations and anisotropy. Directional variograms in the plane of the most consistent portion of the zone (901) showed maximum ranges of approximately 100 metres with no preferred orientation either along strike or down dip (Table 14-11).

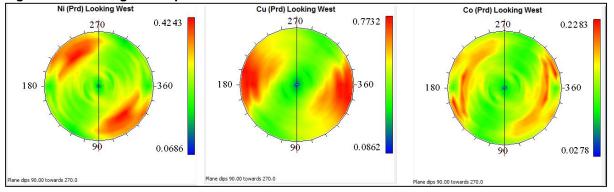

Item	Axis	Azim	Plunge	со	c1	a1	c2	a2
	major	196	-68	0.386	0.261	20	0.1	100
Ni	semi-major	106	0	0.386	0.261	20	0.1	100
	minor	196	22	0.386	0.261	5	0.1	25
	major	196	-68	0.13	0.383	16	0.189	100
Cu	semi-major	106	0	0.13	0.383	16	0.189	100
	minor	196	22	0.13	0.383	10	0.189	25
	major	196	-68	0.12	0.241	16	0.16	90
Со	semi-major	106	0	0.12	0.241	16	0.16	90
	minor	196	22	0.12	0.241	10	0.16	22
	major	196	-68	0.15	0.25	12	0.285	90
Pt	semi-major	106	0	0.15	0.25	12	0.285	90
	minor	196	22	0.15	0.25	10	0.285	22
	major	196	-68	0.15	0.32	15	0.234	90
Pd	semi-major	106	0	0.15	0.32	15	0.234	90
	minor	196	22	0.15	0.32	10	0.234	22
	major	196	-68	0.282	0.332	15.5	0.121	100
Au	semi-major	106	0	0.282	0.332	15.5	0.121	100
	minor	196	22	0.282	0.332	12	0.121	25
	major	196	-68	0.18	0.41	9.2	0.12	100
S	semi-major	106	0	0.18	0.41	9.2	0.12	100
	minor	196	22	0.18	0.41	5	0.12	25

 Table 14-11 Variogram Models - MS-Gabbro Domain

14.8.2 Peridotite Domain

Directional pairwise relative variograms were modeled for the elements in the combined dunite / peridotite / pyroxenite / clinopyroxenite domains. Results revealed a moderate anisotropy with the major axis dipping to the south as shown in the variogram maps in Figure 14-10. Nested spherical structures were modeled for all elements (Table 14-12). Most elements had maximum ranges around 250 metres. The maximum range for sulphur exceeded 500 metres.

The Far West peridotite domain did not have sufficient data for modeling variograms and search ellipsoids for grade interpolation were based on the zone geometry.

Figure 14-10 Variogram Maps - Peridotite

Table 14-12 Variogram Models – Peridotite Domain

Item	Axis	Azim	Plunge	со	c1	a1	c2	a2	c3	a3
	major	100	0	0.05	0.068	26.8	0.04	250		
Ni	semi-major	190	-61	0.05	0.068	25	0.04	208		
	minor	10	-29	0.05	0.068	25	0.04	167		
	major	100	0	0.066	0.149	26.3	0.138	255		
Cu	semi-major	190	-61	0.066	0.149	20	0.138	213		
	minor	10	-29	0.066	0.149	20	0.138	170		
	major	100	0	0.013	0.022	12	0.027	50	0.014	200
Co	semi-major	190	-61	0.013	0.022	8	0.034	30	0.014	167
	minor	10	-29	0.013	0.022	8	0.034	30	0.014	133
	major	108	0	0.081	0.08	31	0.156	260		
Pt	semi-major	198	-56	0.081	0.08	25	0.156	215		
	minor	18	-34	0.081	0.08	25	0.156	170		
	major	116	0	0.081	0.085	30	0.109	250		
Pd	semi-major	206	-51	0.081	0.085	20	0.109	200		
	minor	26	-39	0.081	0.085	20	0.109	167		
	major	116	0	0.12	0.123	25.8	0.071	97	0.125	260
Au	semi-major	206	-51	0.12	0.123	20	0.071	90	0.125	215
	minor	26	-39	0.12	0.123	20	0.071	85	0.125	175
	major	116	0	0.15	0.108	18.4	0.045	141	0.284	520
S	semi-major	206	-51	0.15	0.108	18.4	0.045	141	0.284	520
	minor	26	-39	0.15	0.108	18.4	0.045	120	0.284	350

14.9 Estimation/Interpolation Methods

14.9.1 MS-Gabbro Domains

Twelve separate search domains were identified within the MS-Gabbro limits based primarily on the zone geometry. Soft boundaries were used where grades were contiguous (domains 901-905). Hard or semi-hard boundaries were used for isolated zones 906-912.

Grades were estimated in three passes using the Inverse Distance Cubed method (ID³). For the twelve search domains within the MS-Gabbro, the first pass included uncapped legacy data with non-sampled intervals assigned a 0 value (diluted composites) and uncapped 1987-2013 composites. Gold data from pre-1987 holes was excluded from all grade estimation.

The second pass used only 1987-2013 capped composites. Blocks estimated in both the 1st and 2nd passes were compared and the final grade was the greater of the two estimates. It

was assumed that if the first pass was lower in grade it was due to diluting the missing intervals to 0 grade. The goal was to simulate the erratic nature of the massive sulphide pods along the footwall contact without overly smearing the high grades. Approximately 17% of all estimated blocks were included in the first pass.

The final pass used only capped 1987-2013 composites and the maximum search varied from 250 to 300 metres in order to estimate most blocks within the various search domains.

Search parameters for the MS-Gabbro domains are shown in Table 14-13. The locations of the search domains are illustrated in Figure 14-11.

			Se	arch Distand	es	0	Composi	tes	Search E	llipsoid ZX	Y LRI			
MS-Gabbro Domain	Pass	Data	Major Axis	Semi- major Axis	Minor Axis	Min No.	Max No.	Max / Hole	Bearing	Plunge	Dip			
	1	All *	25	25	5	2	12	2						
901	2	1987-2013	100	100	25	3	16	2	196	-68	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
902	2	1987-2013	100	100	25	3	16	2	190	-50	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
903	2	1987-2013	100	100	25	3	16	2	195	-90	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
904	2	1987-2013	100	100	25	3	16	2	350	-30	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
905	2	1987-2013	100	100	25	2	16	2	117	-18	0			
	3	1987-2013	250	250	62.5	2	16	3						
	1	All *	25	25	5	2	12	2						
906	2	1987-2013	100	100	25	2	16	2	180	-9	-9	-9	-9	0
	3	1987-2013	250	250	62.5	2	16	3						
	1	All *	25	25	5	2	12	2						
907	2	1987-2013	100	100	25	3	16	2	4	-90	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
908	2	1987-2013	100	100	25	3	16	2	122	-32	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
909	2	1987-2013	100	100	25	3	16	2	228	-37	0			
	3	1987-2013	250	250	62.5	3	16	3						
	1	All *	25	25	5	2	12	2						
910	2	1987-2013	100	100	25	3	16	2	350	-90	0			
	3	1987-2013	300	300	75	3	16	3						
	1	All *	25	25	5	2	12	2						
911	2	1987-2013	100	100	25	3	16	2	182	-77	0			
	3	1987-2013	300	300	75	3	16	3		-//				
	1	All *	25	25	5	2	12	2						
912	2	1987-2013	100	100	25	3	16	2	350	-90	0			
	3	1987-2013	300	300	75	3	16	3						

 Table 14-13 Search Parameters for MS-Gabbro Domains

* Included pre-1987 holes uncapped with missing intervals assigned a 0 grade

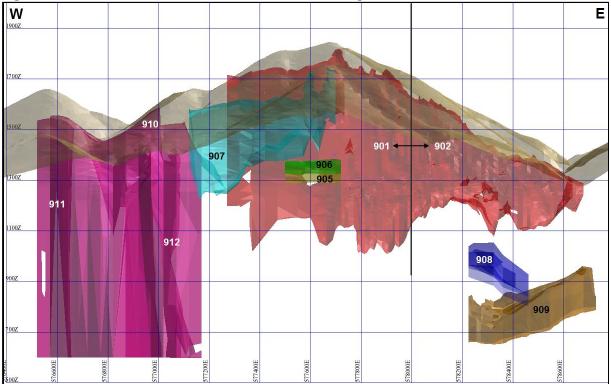
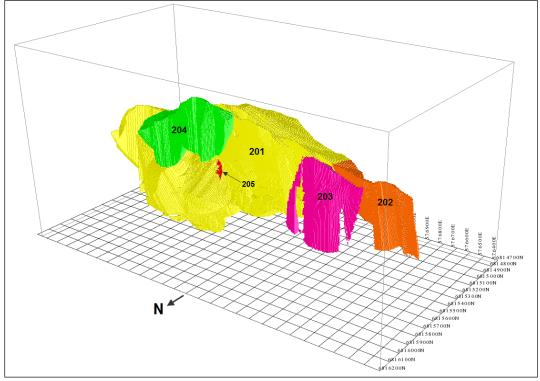


Figure 14-11 MS-Gabbro Search Domains – View Looking North

14.9.2 Dunite / Peridotite / Pyroxentite / Clinopyroxenite Domains

Five separate search domains were identified within the Dunite / Peridotite / Pyroxenite / Clinopyroxenite limits based on variograms models and zone geometry. Pre 1987 composites were not used for estimating grades as there were few sampled intervals and those that were analyzed were often missing Co, Pt, Pd, or Au values.

Grades were estimated in 3 passes using the Inverse Distance Cubed method (ID³). For the five search domains, the first pass used uncapped 1987-2013 composites in order to restrict outlier values to a maximum range of 25 metres along the major search axes. The second pass used capped composites and a maximum anisotropic range of 100 metres with a two hole minimum. The final pass again used capped composites and the maximum search was set at 300 metres for the larger domains and 200 metres for domains 204 and 205.


After grades were estimated Ni values of blocks falling in the Dunite sub-domain were reduced by 0.1% under the assumption that this level of Ni was in silicate form and not recoverable.

Search parameters for the Dunite/Peridotite/Clinopyroxenite domains are shown in Table 14-14. The locations of the search domains are illustrated in Figure 14-12.

		ii Faiailletei		arch Distanc			Composi			llipsoid ZX	Y LRL
Peridotite Domain Code	Pass	Composite Data	Major Axis	Semi- major Axis	Minor Axis	Min No.	Max No.	Max / Hole	Bearing	Plunge	Dip
201 Ni-	1	Uncapped	25	25	5	2	12	2			
Cu-Co	2	Capped	100	83	67	4	16	3	100	0	-61
00 00	3	Capped	300	250	200	4	16	4			
201 Pt-	1	Uncapped	25	25	5	2	12	2			
Pd-Au	2	Capped	100	83	67	4	16	3	116	0	-51
T u Au	3	Capped	300	250	200	4	16	4			
	1	Uncapped	25	21	17	2	12	2		-70	
202	2	Capped	100	83	67	4	16	3	218		0
	3	Capped	300	250	200	4	16	4			
	1	Uncapped	25	21	17	2	12	2			
203	2	Capped	100	83	67	4	16	3	0	-90	0
	3	Capped	300	250	200	4	16	4			
	1	Uncapped	25	21	17	2	12	2			
204	2	Capped	100	83	67	4	16	3	10	-90	0
	3	Capped	200	167	133	4	16	4			
	1	Uncapped	25	25	6	2	12	2			
205	2	Capped	100	100	25	4	16	3	270	0	-52
	3	Capped	200	200	50	4	16	4			

 Table 14-14 Search Parameters for Dunite/Peridotite/Pyroxenite/Clinopyroxenite Domains

14.9.3 Sulphur Estimation

Sulphur content was estimated in a single pass using the Inverse Distance Squared method (ID^2) . Search parameters are presented in Table 14-15 and Table 14-16.

MS-	:	Search Distance	es		Composite	s	Search E	Ellipsoid Z	XY LRL
Gabbro Domain	Major Axis	Semi-major Axis	Minor Axis	Min No.	Max No.	Max / Hole	Bearing	Plunge	Dip
901	300	300	75	4	16	4	196	-68	0
902	300	300	75	4	16	4	190	-50	0
903	300	300	75	4	16	4	195	-90	0
904	300	300	75	4	16	4	350	-30	0
905	300	300	75	2	16	2	117	-18	0
906	300	300	75	2	16	2	180	-9	0
907	300	300	75	2	16	2	4	-90	0
908	300	300	75	2	16	2	122	-32	0
909	300	300	75	2	16	2	228	-37	0
910	300	300	75	2	16	2	350	-90	0
911	300	300	75	2	16	2	182	-77	0
912	300	300	75	2	16	2	350	-90	0

Table 14-15 Search Parameters for Sulphur Content in MS-Gabbro Domains

Table 14-16 Search Parameters for Sulphur Content in Peridotite Domains

Peridotite	:	Search Distanc	es	С	omposites		Search Ellipsoid ZXY LRL			
Domain	Major Axis	Semi-major Axis	Minor Axis	Min No.	Max No.	Max / Hole	Bearing	Plunge	Dip	
201/205	350	350	233	4	16	4	105	0	-67	
202	350	350	233	2	16	2	218	-70	0	
203	350	350	233	2	16	2	0	-90	0	
204	350	350	233	2	16	2	105	0	-67	

14.10 Block Model Validation

14.10.1 Visual Inspection

Model verification was initially carried out by visual comparison of blocks and composite grades in plan and section views. The estimated block grades showed reasonable correlation with adjacent composite grades.

14.10.2 Global Bias Check

A comparison of global mean values between composites and block estimates within Peridotite domains shows a reasonably close relationship with composites and block model values (Table 14-17). Comparison of global block vs composite data within the MS-Gabbro is not statistically meaningful due to the erratic and highly variable nature of the mineralization combined with selective sampling of historic drilling.

Data	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t					
Composites	0.252	0.138	0.015	0.232	0.231	0.046					
Capped Composites	0.252	0.138	0.015	0.231	0.231	0.046					
ID ³ Measured/Indicated	0.253	0.125	0.015	0.218	0.227	0.041					
ID ³ Inferred	0.229	0.107	0.014	0.192	0.196	0.039					

 Table 14-17 Global Mean Grade Comparison in Peridotite

14.10.3 Check for Local Bias

Swath plots were generated to assess the model for local bias by comparing ID^3 and nearest neighbour estimates on panels through the deposit. Results show a reasonable comparison between the methods, particularly in the main portions of the deposit indicated by the bar charts (Figure 14-13 to Figure 14-18).

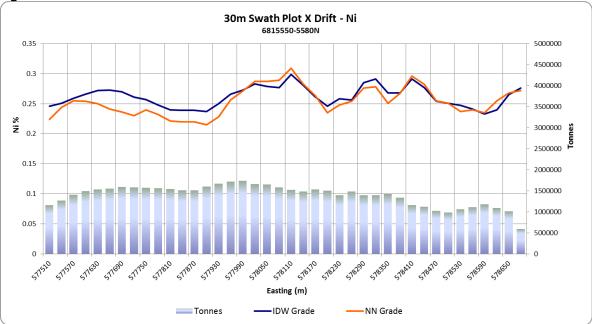
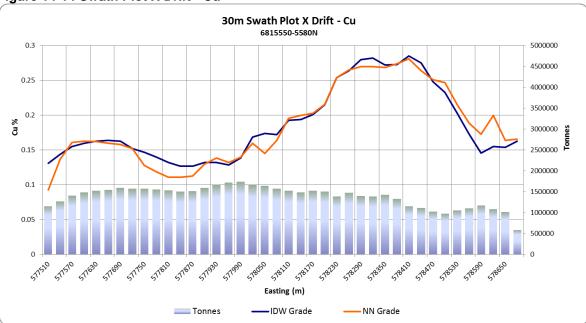
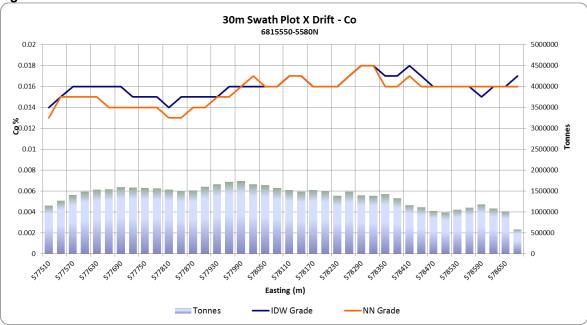
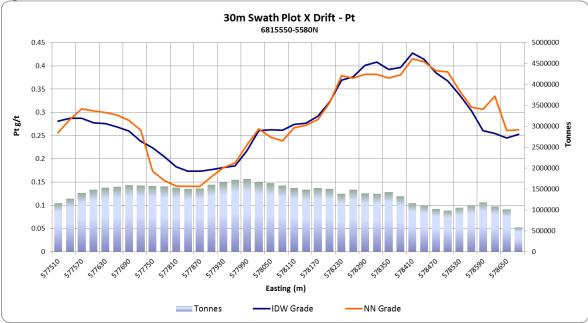




Figure 14-13 Swath Plot X Drift - Ni



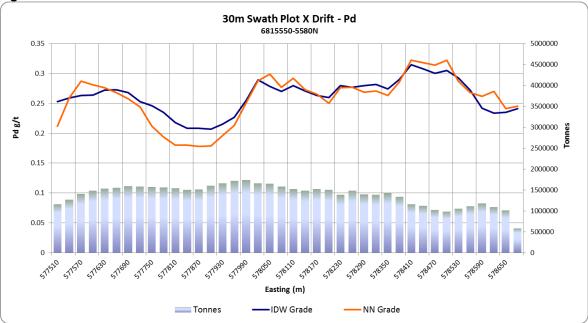


Figure 14-15 Swath Plot X Drift - Co

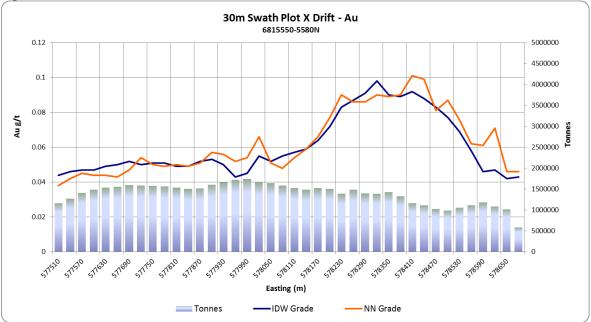


Figure 14-17 Swath Plot X Drift - Pd

14.11 Classification of Mineral Resources

Resource classifications used in this study conform to the CIM Definition Standards for Mineral Resources and Mineral Reserves.

In order to be classified as a measured mineral resource a block had to meet the following conditions:

• Restricted to the main southern Dunite/Peridotite/Pyroxenite/Clinopyroxenite domains (excluding domain 204)

- Estimated using only 1987-2013 data (mostly re-sampled 1987-88 intervals)
- Not extrapolated beyond drilling limits
- Within a 50 metre drill hole spacing based on 1987-2013 drilling

Some isolated blocks and clusters were downgraded to indicated mineral resource based on visual examination.

Blocks not assigned to the measured mineral resource category were classified as indicated mineral resource if they met the following conditions:

- Estimated in the second pass using only post 1987 data and a minimum of 2 drill holes
- Within an approximate 50 x 50 metre drill spacing based on 1987-2013 drilling within MS-Gabbro domains
- With a 100 x 100 metre drill spacing based on 1987-2013 drilling within Dunite/Peridotite/Clinopyroxenite domains
- Not extrapolated more than 50 metres beyond drilling limits

Blocks not classified as measured or indicated mineral resource were assigned to the inferred mineral resource category provided that they were extrapolated no further than 200 metres. An exception was made for a few blocks that were constrained by the MS-Gabbro wireframes that were included in the inferred category to eliminate interior gaps in the model.

14.12 Metal Equivalency Grades

Nickel equivalent (NiEq) values were calculated using metal price assumptions of US\$ \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au.

NiEQ = (Ni +Cu *0.359+Co *1.557+Au *0.218+Pt *0.262+Pd *0.131)

14.13 Reasonable Prospects of Economic Extraction

To assess reasonable prospects for eventual economic extraction a floating cone optimized pit, was prepared using the general economic and technical assumptions listed in Table 14-18 and metal prices stated in Section 14.12.

	Parameter
Pit Slope	45°
Mining Cost	C\$2.00/tonne
Ore Processing Cost	C\$12.91/tonne
G&A Cost	C\$1.10/tonne
Nickel Recovery	70%
Copper Recovery	90%
Cobalt Recovery	64%
Platinum Recovery	60%
PalladiumPalladium Recovery	70%
Gold Recovery	90%
Exchange Rate USD:CAD	0.91

Table 14-18 Pit Optimization Parameters

Blocks falling outside of the optimized pit shell were not considered to be part of the mineral resource.

14.14 Mineral Resource Estimate

The Qualified Person for the mineral resource estimate is Mr Ronald G. Simpson of GeoSim. Mineral Resources have an effective date of July 23, 2014.

Mineral Resources are classified in accordance with the CIM Definition Standards for Mineral Resources and Mineral Reserves.

Table 14-19 presents the mineral resource estimate for the Wellgreen Project at a base case cut-off grade of 0.15% Ni Equivalent (or 0.57 g/t Pt Equivalent).

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	92,293	0.260	0.155	0.015	0.252	0.246	0.052	0.550	0.449	1.713
Indicated	237,276	0.261	0.135	0.015	0.231	0.238	0.042	0.511	0.434	1.656
Total M&I	329,569	0.261	0.141	0.015	0.237	0.240	0.045	0.522	0.438	1.672
Inferred	846,389	0.237	0.139	0.015	0.234	0.226	0.047	0.507	0.412	1.571

Table 14-19 Mineral Resource at a 0.15% NiEq cut-off

Notes:

- 1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.
- Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x 100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.
- Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have not been adjusted to reflect metallurgical recoveries.
- 4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).
- 5. Totals may not sum due to rounding.
- 6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.
- 7. NiEq% = Ni%+ Cu% x 3.00/8.35 + Co% x 13.00/8.35 + Pt [g/t]/31.103 x 1,500/8.35/22.04 + Pd [g/t]/31.103 x 750/8.35/22.04 + Au [g/t]/31.103 x 1,250/8.35/22.04

In addition, Table 14-20 below shows the higher grade portion of the resource within the constrained pit at a 1.9 g/t Pt Eq. or 0.50% Ni Eq. cut-off.

Category	Tonnes 000s	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	3E g/t	Ni Eq. %	Pt Eq. %
Measured	21,854	0.326	0.301	0.019	0.454	0.366	0.103	0.923	0.653	2.492
Indicated	50,264	0.334	0.286	0.019	0.455	0.373	0.090	0.919	0.653	2.493
Total M&I	72,117	0.332	0.291	0.019	0.455	0.371	0.094	0.920	0.653	2.493
Inferred	173,684	0.309	0.301	0.018	0.456	0.352	0.098	0.906	0.631	2.410

 Table 14-20 Mineral Resource at a 0.50% NiEq cut-off

Notes:

1. Mineral resource estimate prepared by GeoSim Services Inc. with an effective date of July 23, 2014.

2. Measured mineral resources are drilled on approximate 50 x 50 metre drill spacing and confined to

clinopyroxenite and peridotite/dunite domains. Indicated mineral resources are drilled on approximate 100 x

100 metre drill spacing except for the massive sulphide and gabbro domains which used a 50 x 50 metre spacing.

- 3. Nickel equivalent (Ni Eq. %) and platinum equivalent (Pt Eq. g/t) calculations reflect total gross metal content using US\$ of \$8.35/lb Ni, \$3.00/lb Cu, \$13.00/lb Co, \$1,500/oz Pt, \$750/oz Pd and \$1,250/oz Au and have not been adjusted to reflect metallurgical recoveries.
- 4. An optimized pit shell was generated using the following assumptions: metal prices in Note 3 above ; a 45 degree pit slope; assumed metallurgical recoveries of 70% for Ni, 90% for Cu, 64% for Co, 60% for Pt, 70% for Pd and 75% for Au; an exchange rate of USD\$1.00=CAD\$0.91; and mining costs of \$2.00 per tonne, processing costs of \$12.91 per tonne, and general & administrative charges of \$1.10 per tonne (all expressed in Canadian dollars).
- 5. Totals may not sum due to rounding.
- 6. Mineral resources are not mineral reserves and do not have demonstrated economic viability.
- 7. NiEq% = Ni%+ Cu% x 3.00/8.35 + Co% x 13.00/8.35 + Pt [g/t]/31.103 x 1,500/8.35/22.04 + Pd [g/t]/31.103 x 750/8.35/22.04 + Au [g/t]/31.103 x 1,250/8.35/22.04

Table 14-21 to Table 14-24 show the sensitivity of the resource to cut-off grade.

	Tonnes 000's	Grades								
% NiEq Cut-off		Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	Grade 3E g/t	NiEq %	PtEq g/t
0.10	93,332	0.257	0.154	0.015	0.250	0.244	0.051	0.546	0.445	1.700
0.15	92,293	0.260	0.155	0.015	0.252	0.246	0.052	0.550	0.449	1.713
0.20	90,815	0.262	0.156	0.015	0.254	0.248	0.052	0.555	0.453	1.730
0.25	88,625	0.266	0.158	0.016	0.257	0.251	0.053	0.561	0.459	1.751
0.30	83,231	0.272	0.164	0.016	0.266	0.258	0.054	0.578	0.470	1.796
0.35	71,784	0.282	0.176	0.016	0.284	0.274	0.058	0.617	0.493	1.883
0.40	55,642	0.295	0.196	0.017	0.315	0.296	0.065	0.676	0.527	2.012
0.45	36,455	0.311	0.237	0.018	0.371	0.329	0.080	0.779	0.581	2.217
0.50	21,854	0.326	0.301	0.019	0.454	0.366	0.103	0.923	0.653	2.492

 Table 14-21 Sensitivity to Cut-off Grade - Measured Category

Table 14-22 Sensitivity to Cut-off Grade - Indicated Category

	Tannaa		Grades									
% NiEq Cut-off	Tonnes 000's	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	Grade 3E g/t	NiEq %	PtEq g/t		
0.10	249,006	0.252	0.130	0.015	0.223	0.231	0.041	0.495	0.419	1.601		
0.15	237,276	0.261	0.135	0.015	0.231	0.238	0.042	0.511	0.434	1.656		
0.20	229,001	0.267	0.138	0.015	0.236	0.243	0.043	0.523	0.443	1.692		
0.25	223,554	0.270	0.140	0.015	0.240	0.247	0.044	0.530	0.449	1.713		
0.30	207,082	0.276	0.147	0.015	0.251	0.257	0.046	0.553	0.462	1.764		
0.35	173,273	0.286	0.164	0.016	0.275	0.276	0.051	0.602	0.489	1.865		
0.40	132,328	0.298	0.186	0.017	0.309	0.299	0.057	0.666	0.523	1.998		
0.45	83,313	0.315	0.228	0.018	0.372	0.335	0.071	0.778	0.581	2.219		
0.50	50,264	0.334	0.286	0.019	0.455	0.373	0.090	0.919	0.653	2.493		

Table 14-23 Sensitivity to Cut-off Grade - Measured and Indicated Category

	T	Grades								
% NiEq Cut-off	Tonnes 000's	Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	Grade 3E g/t	NiEq %	PtEq g/t
0.10	342,338	0.253	0.136	0.015	0.230	0.235	0.044	0.509	0.427	1.630
0.15	329,569	0.261	0.141	0.015	0.237	0.240	0.045	0.522	0.438	1.672
0.20	319,816	0.266	0.143	0.015	0.241	0.245	0.046	0.532	0.446	1.702
0.25	312,179	0.269	0.145	0.015	0.245	0.248	0.046	0.539	0.452	1.725
0.30	290,314	0.275	0.152	0.016	0.255	0.257	0.048	0.560	0.464	1.771
0.35	245,057	0.285	0.167	0.016	0.278	0.276	0.053	0.607	0.490	1.870
0.40	187,970	0.297	0.189	0.017	0.311	0.298	0.059	0.668	0.525	2.004
0.45	119,768	0.314	0.231	0.018	0.372	0.333	0.073	0.778	0.581	2.218
0.50	72,117	0.332	0.291	0.019	0.455	0.371	0.094	0.920	0.653	2.493

Table 14-24 Sensitivity to Cut-off Grade - Inferred Category

		Tonnes 000's	Grades								
	% NiEq Cut-off		Ni %	Cu %	Co %	Pt g/t	Pd g/t	Au g/t	Grade 3E g/t	NiEq %	PtEq g/t
	0.10	946,412	0.220	0.127	0.015	0.216	0.211	0.043	0.470	0.381	1.456
	0.15	846,389	0.237	0.139	0.015	0.234	0.226	0.047	0.507	0.412	1.571
	0.20	774,501	0.250	0.149	0.015	0.249	0.236	0.050	0.534	0.434	1.656
	0.25	747,897	0.254	0.153	0.015	0.255	0.240	0.051	0.546	0.441	1.685
	0.30	697,852	0.258	0.160	0.015	0.265	0.248	0.053	0.566	0.453	1.728
	0.35	564,699	0.267	0.183	0.016	0.294	0.267	0.061	0.622	0.483	1.842
	0.40	415,192	0.281	0.209	0.016	0.331	0.292	0.069	0.692	0.522	1.992
	0.45	265,603	0.297	0.251	0.017	0.393	0.325	0.082	0.801	0.577	2.202
_	0.50	173,684	0.309	0.301	0.018	0.456	0.352	0.098	0.906	0.631	2.410

14.15 Factors That May Affect the Mineral Resource Estimate

Areas of uncertainty that may materially impact the mineral resource estimate include:

- Commodity price assumptions
- Pit slope angles
- Metal recovery assumptions
- Mining and Process cost assumptions

There are no other known factors or issues that materially affect the estimate other than normal risks faced by mining projects in the Yukon Territory, Canada in terms of environmental, permitting, taxation, socio-economic, marketing and political factors. GeoSim is not aware of any legal or title issues that would materially affect the mineral resource estimate.

15 ADJACENT PROPERTIES

Not applicable

16 OTHER RELEVANT DATA AND INFORMATION.

There are no other data known to the author that is relevant to this Technical Report; therefore, there are no relevant data or information presented in this section.

17 INTERPRETATION AND CONCLUSIONS

The Wellgreen Property hosts a magmatic sill-hosted Ni-Cu-PGE deposit that has been defined over a 2.8 kilometre East-West trend. The deposit averages 100 to 200 metres in thickness at surface in the Far West Zone, expands to 500 metres in thickness in the Central Zone and to nearly a kilometre wide in the Far East Zone where the deposit remains open down dip and along trend.

Drilling by Wellgreen Platinum in 2012 and 2013 has expanded the estimated PGM-Ni-Cu-Co mineral resource outlined by Tetra Tech in 2012. A detailed geologic model has been developed to constrain the updated resource estimate. The new drilling results combined with re-sampling of core from the 1987-88 drill programs has increased confidence in the grade model and enabled classification of measured and indicated mineral resources.

Sample preparation, security and analysis are compliant with industry standards and are adequate to support a mineral resource estimate as defined under NI 43-101. QA/QC with respect to the results received to date for the Wellgreen Platinum exploration programs meets the standard of industry best practice, and protocols have been well documented.

With respect to risk and uncertainties that could reasonably be expected to affect the reliability or confidence in the exploration information, the significant risks are

- Commodity price assumptions
- Pit slope angles
- Metal recovery assumptions
- Mining and Process cost assumptions
- Concentrate quality assumptions
- Offsite cost assumptions

There are no other known factors or issues that materially affect the estimate other than normal risks faced by mining projects in the Yukon Territory, Canada.

18 RECOMMENDATIONS

The mineral resource estimate presented in this Technical Report is supportive of further exploration activities at the Wellgreen project and it is suitable to be used for future mine planning assessments at the Wellgreen project.

GeoSim recommends that Wellgreen Platinum carry out the following \$1 million exploration expenditure program within the next 18 months to further expand and refine the resource body at its Wellgreen PGM-Ni-Cu project:

- A. Remainder of 2014 \$430,000
 - 1. Complete re-logging of approximately 6,000 metres of remaining historical drill core;
 - Develop a sampling program to test for rare PGM metals to support potential future development of a resource for rhodium, iridium, ruthenium and osmium;
 - 3. Complete additional select drilling to confirm continuity of the higher grade material between the identified zones; and
 - 4. Continue surface water and ground water baseline environmental monitoring in support of existing permits and licenses, along with continued local community liaisons.
- B. 2015 total \$570,000
 - Continue surface water and ground water baseline environmental monitoring in support of existing permits and licenses, along with continued local community liaisons;
 - Complete underground ground control rehabilitation within existing underground workings to facilitate underground drilling and/or the ability to collect bulk samples from the Peridotite, Clinopyroxenite, and Gabbro rock type domains;
 - 3. Conduct geophysical and/or soil sampling surveys at the Wellgreen, and Quill/Burwash areas, along trend of the Wellgreen resource area to define additional potential targets for future drilling; and
 - 4. Continue to refine resolution of topographic base for improved future mine planning.

19 REFERENCES

Cabri, Louis J.; Hulbert, Larry J.; LaFlamme, J.H. Gilles; Lastra Rolando; Sie, Soey H.; Ryan, Chris G., and John L. Campbell, 1993. Process Mineralogy of Samples from the Wellgreen Cu-Ni-Pt-Pd.

Carnes, R.C., 1992. Summary Report on Kluane Range Ni-Cu-PGE Properties, Southwest Yukon Territory, All-North Resources Internal Report.

Carter, A., Corpuz, P., Bridson, P., McCracken, T., (Tetra Tech), 2012; Wellgreen Project Preliminary Economic Assessment, Yukon, Canada, dated August 1, 2012

Hulbert, L.J., 1997 Geology and Metallogeny of the Kluane Mafic-Ultramafic Belt, Yukon Territory, Canada: Eastern Wrangellia – A new Ni-Cu-PGE Metallogenic Terrane, Geological Survey of Canada Bulletin 506.

Hulbert, Larry, 1985; Wellgreen deposit, quill creek Complex, Wrangellia-Kluane Mafic-Ultramafic Belt, Geological Survey of Canada.

Hulbert, L.J. and Stone, W., 2006, Eastern Wrangellia – A New Ni-Cu-PGE Metallogenic Terrane in North America, AESC2006, Melbourne, Australia

Israel, S. and Van Zeyl, D., 2004. Preliminary geological map of the Quill Creek area (parts of NTS 115G/5, 6, 12), southwest Yukon (1:50 000 scale). Yukon Geological Survey, Open File 2004-20.

Kociumbas, M., El-Rassi, D., (WGM Limited), 2008; Technical Report and Mineral Resource Estimate for the Wellgreen Ni-Cu Deposit, Yukon Territory, Canada for Coronation Minerals Inc., dated July 15, 2008

McCracken, T., 2010; Technical Report on the Wellgreen Ni-Cu-Pt-Pd Project

McCracken, T., (Wardrop Engineering Inc.), 2011; Technical Report and Resource Estimate on the Wellgreen Pt-Pd-Ni-Cu Project, Yukon, Canada, dated July 21, 2011

Peter, J.M. (1989): The Windy Craggy copper-cobalt-gold massive sulphide deposit, Northwestern British Columbia (114P). British Columbia Ministry of Energy Mines and Petroleum Resources, Geologica Fieldwork, 1988, Paper 1989-1, 455-466

SGS Canada Inc., 2012; Metallurgical Testwork of Cu/Ni./PE Samples from the Wellgreen Property. Prepared for Prophecy Platinum Corporation, dated August 7, 2012

Stanley, C.R., and Lawie, D., 2007: Average Relative Error in Geochemical Determinations: Clarification, Calculation, and a Plea for Consistency: Exploration and Mining Geology, Vol. 16 No.3–4, p 265–274